Laboratuvar Yapımı Kağıtların Çekme Özelliklerini Ölçmenin Alternatif Bir Yolu

Bu çalışmada, belirli üretim koşullarında farklı gramajlara sahip laboratuvar yapımı el yaprakları elde edilmiştir. Laboratuvarda üretilen el yapraklarının çekme özellikleri iki ölçüm tekniği kullanılarak analiz edilmiştir. Çekme davranışını belirlemek için ana yöntem, genel olarak kabul edilen geleneksel bir test makinesi olan evrensel test makinesinde gerçekleştirildi. El yapraklarının çekme özelliklerini ölçmek için ikinci ve alternatif bir yöntem olarak bir reometre cihazı kullanıldı. Reometre cihazından alınan veriler incelendi ve geleneksel çekme test cihazı verileriyle karşılaştırıldı. Instron 5564 Universal Test Cihazı ve Hibrit Discovery HR-2 Reometre Cihaızndan alınan verilerin çeşitli gramaj aralığına bağlı olarak incelenen çekme özellikleriyle ilişkisini analiz etmek için doğrusal en küçük kareler regresyonu uygulandı. Farklı gramaj gruplarına sahip kağıtlar üzerinde yapılan deneyler, yöntemlerin makul bir uyum içinde sonuçlar verdiğini göstermiştir. Bu sonuçlar, numunelerin temel gramajlarının bir fonksiyonu olarak çekme indeksi ve elastik modül değerlerinde kabul edilebilir farklılıklar olduğunu göstermiştir.

An Alternative Way of Measuring Tensile Characteristics of Handsheets

In this work, the laboratory-made handsheets having different grammages were obtained at certain production conditions. The tensile characteristics of the laboratory-made handsheets were analysed by using two measuring techniques. The main method for determining tensile behaviour was performed on the universal testing machine, which is a generally accepted conventional testing machine. A rheometer device was used as a second and alternative method for measuring the tensile properties of handsheets. The given data were investigated and compared with the data of conventional tensile tester. Linear least square regression was applied to analyse the association of the data from the Instron 5564 Universal Testing Machine and Hybrid Rheometer Discovery HR-2 Machine with examined tensile characteristics depending on the various grammage range. The experiments on the handsheets having different grammage groups showed that the methods give results in reasonable agreement. These results showed that there are acceptable differences in the tensile index and elastic modulus values of the samples as a function of their basis grammages.

___

  • Bloch, J. F., Engin, M. and Sampson, W. W. (2019). Grammage dependence of paper thickness. Appita Journal, 72(1), 30-40.
  • Burgess, W. H. (1970). Effect of basis weight on tensile strength. Tappi, 53(9), 1680.
  • Clark, J. (1962). Effects of fiber coarseness and length, I. Bulk, burst, tears, fold and Tensile tests. Tappi Journal, 45, 628-634.
  • Cox, H. L. (1952). The elasticity and strength of paper and other fibrous materials. British Journal of Applied Physics, 3(3), 72.
  • Engin, M. (2017). An investigation into the tensile behaviour of self-bonded cellulosic fibre networks, PhD thesis, School of Materials, Faculty of Science and Engineering, The University of Manchester.
  • Ferreira, P. J., Martins, A. A. and Figueiredo, M. M. (2000). Primary and secondary fines from Eucalyptus globulus kraft pulps. Characterization and influence. Paperi Ja Puu-Paper & Timber, (6), 403-408.
  • Gullichsen, J., Paulapuro, H., Levlin, J. E. and Abbott, J. C. (1999). Pulp and paper Testing. Fapet Oy.
  • Guo, S., Zhan, H., Zhang, C., Fu, S., Heijnesson-Hultén, A., Basta, J. and Greschik, T. (2009). Pulp and fiber characterization of wheat straw and eucaluptus pulps - A. BioResources, 4(3), 1006-1016.
  • Gülsoy, S., Hürfikir, Z. and Turgut, B. (2016). Effects of decreasing grammage on the handsheet properties of unbeaten and beaten kraft pulps. Turkish Journal of Forestry, 17(1), 56-60.
  • Gülsoy, S. K. and Simsir, S. (2017). The effect of hand sheet grammage on strength properties of test liner papers. J Bartin Fac Forest, 19, 117-22.
  • Heyden, S. (2000). Network modelling for the evaluation of mechanical properties of cellulose fluff, PhD thesis, Lund University.
  • Hubbe, M. A. and Heitmann, J. A. (2007). Review of factors affecting the release of water from cellulosic fibers during paper manufacture. BioResources, 2(3), 500-533.
  • I'Anson, S. J. and Sampson, W. W. (2007). Competing Weibull and stress-transfer influences on the specific tensile strength of a bonded fibrous network. Compos. Sci. Tech., 67(7):1650-1658.
  • I'Anson, S. J., Sampson, W. W. and Savani, S. (2008). Density dependent influence of grammage on tensile properties of handsheets. Journal of Pulp and Paper Science, 34(3), 182-199.
  • Ingmanson, W. L. and Thode, E. F. (1959). Factors contributing to the strength of a sheet of paper. II. Relative bonded area. Tappi, 42(1), 83-93.
  • Mark, R. E., Borch, J. and Habeger, C. (Eds.). (2002). Handbook of physical testing of paper (Vol. 1). Crc Press.
  • Miettinen, P. P. J., Ketoja, J. A. and Klingenberg, D. J. (2007). Simulated strength of wet fibre networks. Journal of Pulp and Paper Science, 33(4), 199-205.
  • Mohlin, U. B. (1992). Influence of grammage on sheet strength properties. In Paper Physics Seminar Proceedings, Otaniemi (pp. 1-12).
  • Nilsen, N., Zabihian, M. and Niskanen, K. (1998). KCL-PAKKA: a tool for simulating paper properties. Tappi journal.--(USA).
  • Nordström, B. (2014). Effects of fiber dimensions on compression strength of handsheets. Nordic Pulp & Paper Research Journal, 29(4), 711-716.
  • Nordström, B. (2006). Twin-wire roll forming of mechanical base paper from three furnishes–effects on formation and mechanical properties. Nordic Pulp & Paper Research Journal, 21(3), 349-358.
  • Page, D. H. (1969). A theory for the tensile strength of paper. Tappi, 52, 674-681.
  • Perkins R.W. and Mark R.E. (1976). On the structural theory of the elastic behavior of paper. Tappi Journal, 59(1976):12, 118–120.
  • Retulainen, E. and Nieminen, K. (1996). Fibre properties as control variables in papermaking?: Part 2 Strengthening interfiber bonds and reducing grammage. Paperi ja puu, (5), 305-311.
  • Seth, R.S. (1995). The effect of fiber length and coarseness on the tensile strength of wet webs: a statistical geometry explanation. Tappi Journal, 78(3), 99–102.
  • Van den Akker JA (1962). Some theoretical considerationson the mechanical properties of fibrous structures. Pages 201-241 in Bolam, ed. Formation and structure of paper. Vol. 1. Transactions of the symposium held at Oxford, September 1961, Technical Section of the British Paper and Board’s Makers Association, London, UK.
  • Wangaard, F. F. and Woodson, G. E. (1972). Fiber length-fiber strength interrelationship for slash pine and its effect on pulp-sheet properties. Wood Science, 5 (3), 235-240.
  • Winter, A., Gindl-Altmutter, W., Mandlez, D., Bauer, W., Eckhart, R., Leitner, J. and Veigel, S. (2021). Reinforcement effect of pulp fines and microfibrillated cellulose in highly densified binderless paperboards. Journal of Cleaner Production, 281, 125258.
  • Winters, U. W., Duffy, G. G., Kibblewhite, R. P. and Riddell, M. J. (2002). Effect of grammage and concentration on paper sheet formation of Pinus radiata kraft pulps. Appita Journal, 55(1), 35-42.
  • TAPPI T 205 (2018) — Forming Handsheets For Physical Tests Of Pulp
  • TAPPI T 275 (2018). —Screening of pulp (Somerville-type equipment)
  • TAPPI UM 256 (2015). Water retention value (WRV)
  • ISO 52671: 1999 (2021). Pulps — Determination of drainability — Part 1: Schopper-Riegler method
  • ISO 187:1990 (1990). Paper, board and pulps — Standard atmosphere for conditioning and testing and procedure for monitoring the atmosphere and conditioning of samples
  • ISO 534: 2011 (2017). Paper and board — Determination of thickness, density and specific volume
  • ISO 536:2012 (2012). Paper and board — Determination of grammage
  • ISO 5264-1:1979 (2019). Pulps — Laboratory beating — Part 1: Valley beater method
  • ISO 19242:2008 (2018). Paper and board — Determination of tensile properties — Part 2: Constant rate of elongation method.