Genç Karaçam (Pinus nigra Arn.) Fidanlarında İbre Kaybının Fidanın Morfolojik ve Anatomik Özelliklerine Etkisi

Literatürde çeşitli miktarlarda ibre eksiltme uygulamasının ağaç fidan halinde iken fidanın büyümesine etkisi çok az araştırılmıştır. Bu nedenle, bu çalışmanın amacı, karaçam (Pinus nigra Arn.) fidanlarında çeşitli miktarlarda ibre eksiltme uygulamasının fidanın morfolojik, anatomik ve odun yoğunluk özelliklerine etkisini belirlemektir. Fidanlarda, ibre eksiltme miktarlarının fidan özelliklerine etkisini belirleyebilmek amacıyla fidanların gövdelerinden 4 farklı miktarda ibre eksiltilmiştir: %0, %25, %50 ve %75. Her bir ibre eksiltme uygulaması için, fidanların morfolojik (gövde çapı, nodyum sayısı, öz yüzdesi, kabuk yüzdesi ve ksilem yüzdesi), anatomik (ortalama yıllık halka genişliği, birim alanda traheid sayısı, traheid uzunluğu, traheid genişliği, traheid lumen genişliği, traheid hücre duvarı kalınlığı, öz ışını sayısı, öz ışınlarının uzunlukları ve genişlikleri) ve odun yoğunluk değerleri analizleri ayrı ayrı yapılmıştır. Morfolojik test bulguları %0 ve %25 miktarda ibre kesilmiş olan fidanlarda gövde çapının diğer ibre eksiltme uygulamalarından daha fazla olduğunu göstermiştir. Fakat, diğer bir morfolojik özellik olan nodyum sayısı, farklı miktarda ibre kesme uygulama işlemleri arasında istatistiksel olarak önemli bir değişim göstermemiştir. Her bir fidanda, nodyum sayısı yaklaşık 4 olarak tespit edilmiştir. Fidanların odun yoğunluk değerleri sonuçlarına göre, % 0 ve % 25 miktarda ibre eksiltmelerinde fidanların yoğunluk değerleri %50 ve %75 miktarda ibre eksiltme uygulamalarından daha yüksek çıkmıştır. Anatomik analiz sonuçlarına göre, hiç ibre eksiltilmemiş olan fidanlarda (%0) öz ışınları daha uzun ve daha geniş bulunmuştur, ayrıca birim alanda (1 mm2 alanda) traheid sayısı ve traheid uzunluğu diğer ibre eksiltme uygulamalarından daha yüksek değerler çıkarmıştır. % 25 ibre eksiltme uygulamasında ise ilginç biçimde traheid hücrelerinin hücre zarı kalınlığı diğer ibre eksiltme uygulamalarından daha yüksek saptanmıştır.

Anatomical and Morphological Changes with Needle Removal Treatments on the Seedlings of Pinus nigra Arn. (Anatolian black pine)

The effect of needle removal treatments on the morphology, anatomy and wood density was less studied in the literature. Therefore, the aim this study was to investigate the effect of needle removal on the morphological, anatomical and wood density properties of the seedlings of Pinus nigra Arn. (Anatolian black pine). The needles of the seedlings were removed in four different amounts (0%, 25%, 50% and 75%) to determine whether there is a relationship between the properties of seedlings and the needle removal treatments. The morphological (stem diameter, node numbers, pith percentage, bark percentage, xylem percentage), anatomical properties (average annual ring width, tracheid number per mm2, tracheid height/width, tracheid lumen width, tracheid wall thickness, ray number per mm2, ray height/width) and wood densities were individually determined for each treatment. The morphological results showed that stem diameter was greatest in 0% and 25% needle removal treatments than that of two treatments. Bark% was also found to be higher in the 0% needle removal treatments than others. However, node numbers, pith% and xylem% did not differ significantly between four removal treatments. The density results showed that the seedlings of 0% and 25% needle treatments were denser than 50% and 75% needle removal treatments. The results of anatomical analysis also found surprising results between four treatments. Ray height/width, tracheid number per mm2and tracheid length were significantly greater in the 0% removal of needles than that of three treatments. 25% needle removal treatment also showed larger tracheid area and tracheid wall thickness than that of three needle removal treatments.

___

  • 1. Atalay I, Efe R (2012). Ecological attributes and distribution of Anatolian black pine [Pinus nigra Arnold. subsp. pallasiana Lamb. Holmboe] in Turkey. J Environ Biol., 33:509-19.
  • 2. Anten NPR, Casado‐Garcia R, Nagashima H (2005). Effects of mechanical stress and plant density on mechanical characteristics, growth and lifetime reproduction of tobacco plants. American Naturalist, 166: 650– 660.
  • 3. Ashby MF, Easterling KE, Harrysson R, Maiti SK (1985). The fracture and toughness of woods. Proc. Roy. Soc. Lond., A398: 261–280.
  • 4. Barnett J, Jeronimidis G. (2003). Wood Quality and Its Biological Basis. Blackwell, 226 pp.
  • 5. Baskin CC, Baskin JM (1998). Seeds, Ecology, Biogeography, and Evolution of Dormancy and Germination. San Diego, CA: Academic Press.
  • 6. Bergman BA, Ewers FW, Bobich E (2009). Effect of leaf nodes on the mechanical properties of stems. Botany and Mycology 2009 (abstract). http://2009.botan yconf erenc e.org/engin e/searc h/index .php?func=detai l&aid=134.
  • 7. Calvert JR, Farrar RA (1999). An Engineering Data Book. Palgrave, Basingstoke.
  • 8. Caringella MA, Bergman BA, Stanfield RC, Ewers MM, Bobich EG, Ewers FW (2014). Effects of phyllotaxy on biomechanical properties of stems of Cercis occidentalis (Fabaceae). Am J Bot., 101: 206–210.
  • 9. Cuneo P, Offord CA, Leishman MR (2010). Seed ecology of the invasive woody plant African Olive (Olea europaea subsp. Cuspidate): implications for management and restoration. Australian Journal of Botany, 58(5): 342–348.
  • 10. Fosket DE (1994). Plant growth and development. San Diego, CA: Academic Press, Inc.
  • 11. Franklin GL (1945). Preparation of thin sections of synthetic resins and woody resin composites and a new method for wood. Nature, 155, 3924–3951.
  • 12. Haberlandt G (1928). Physiological plant anatomy. MacMillian and Co., London.
  • 13. Ifju G, Kennedy RW (1962). Some variables affecting microtensile strength of Douglas-fir. Forest Prod. J., 12: 213–217.
  • 14. Jaffe MJ, Forbes S (1993). Thigmomorphogenesis: the effect of mechanical perturbation on plants. Plant Growth Regulation, 12: 313-324.
  • 15. LoGullo MA, Salleo SE, Piaceri C, Russo R (1995). Relations between vulnerability to xylem embolism and xylem conduit dimensions in young trees of Quercus cerris. Plant Cell Environ., 18: 661669.
  • 16. Makinen H, Hynynen J (2014). Wood density and tracheid properties of Scots pine: responses to repeated fertilization and timing of the first commercial thinning. Forestry, 87: 437-444.
  • 17. Murmanis L (1970). Locating the initial in the vascular cambium of Pinus strobus L. by electron microscoby. Wood Science and Technology, 4: 1-14.
  • 18. Niklas KJ (1992). Plant biomechanics: an engineering approach to plant form and function. University of Chicago Press, Chicago, p 622.
  • 19. Niklas KJ, Spatz HC (2004). Growth and hydraulic (not mechanical) constraints govern the scaling of tree height and mass. Proc. Natl. Acad. Sci. U.S.A. 101: 15661–15663.
  • 20. Olson ME, Aguirrehernández R, Rosell JA (2009). Universal foliage-stem scaling across environments and species in dicot trees: plasticity, biomechanics and Corner’s rules. Ecol. Lett., 12: 210–219.
  • 21. Ozden S, Ennos AR (2014). Understanding the function of rays and wood density on transverse fracture behaviour of green wood in three species. J Agric. Sci. Technol., B4: 731–743.
  • 22. Özden S, Ennos R (2018). The mechanics and morphology of branch and coppice stems in three temperate tree species. Trees, 32: 933– 949.
  • 23. Salleo S, LoGullo MA (1986). Xylem cavitation in nodes and internodes of whole Chorisia insignis H. B. et K. plants subjected to water stress: relations between xylem conduit size and cavitation. Ann. Bot., 58: 431–441.
  • 24. Smith I, Chui YH (1994). Factors affecting mode I fracture energy of plantation-grown red pine. Wood Sci. Technol. 28:147–157
  • 25. Smith CC, Fretwell SD (1974). The optimal balance between size and number of offspring. Am. Nat., 108: 499– 506.
  • 26. Sun S, Jin D, Shi P (2006). The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient: an invariant allometric scaling relationship. Ann. Bot., 97: 97–107.
  • 27. Telewski FW (1990). Structure and function of flexure wood in Abies fraseri. Tree Physiology 5:113.
  • 28. Thomas P (2000). Trees: their natural history. Cambridge University Press, Cambridge.
  • 29. Tyree MT, Zimmermann MH (2002). Xylem structure and the ascent of sap, 2nd edn. Springer, Berlin, p 283.
  • 30. Westoby M, Wright IJ (2003). The leaf size-twig size spectrum and its relationship to other important spectra of variation among species. Oecologia, 135: 621–628.
  • 31. West GB, Brown JH, Enquist BJ (1999). A general model for the structure and allometry of plant vascular systems. Nature, 400: 664–667.
  • 32. Xiang S, Liu YL (2009b). Stem architectural effect on leaf size, leaf number, and leaf mass fraction in plant twigs of woody species. Int. J. Plant Sci., 170: 999–1008.
  • 33. Xiang S, Wu N, Sun SC (2009a). Within-twig biomass allocation in subtropical evergreen broadleaved species along an altitudinal gradient: allometric scaling analysis. Trees, 23: 637–647.
  • 34. Zimmermann MH, Sperry JS (1983). Anatomy of the palm Rhapis excelsa. IX. Xylem structure of the leaf insertion. J. Arnold Arbor., 64: 599–609.
Bartın Orman Fakültesi Dergisi-Cover
  • ISSN: 1302-0943
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1998
  • Yayıncı: Bartın Üniversitesi Orman Fakültesi