Farklı Yaşlardaki Kazdağı Göknar Meşçerelerinde (Abies nordmanniana subsp. equi-trojani (Steven) Spach) Toprak Organik Karbon ve Azot Stoklarındaki Değişimin Belirlenmesi

Orman ekosistemlerindeki karbonun çoğu toprak yüzeyi ölü örtüsünde ve toprakta depolanır. Toprak organik karbon (TOK), toplam azot (TA) stokları oldukça değişkendir. Özellikle orman karbon stokları ve havuzu orman yaşına göre değişir ve orman yaşına bağlı olarak genellikle bölgesel veya ulusal karbon envanterleri için tahmin edilebilmektedir. Bu nedenle, meşcere yaşının karbon ve azot stokları üzerindeki etkisinin, ağaç türü dağılımı üzerindeki miktarının belirlenmesi son derece önemlidir. Bu çalışmada, Kastamonu ilinin kuzeybatısı (Ilgaz) ve kuzeydoğusunda (İnebolu) yaygın olan Kazdağı göknarın (Abies nordmanniana subsp. equi-trojani (Steven) Spach) ölü örtü miktarı, toprak organik karbon (TOK) ve toplam azot (TA) stokları üzerinde meşcere yaşının etkisi araştırılmıştır. Meşceredeki ağaçların ortalama yaşları 38, 57, 60, 66, 90, 100, 183, 250, 283 ve 306 olan saf göknar meşcerelerinin her birinde üç tekrarlı deneme alanında çalışılmıştır. Sonuçlar, farklı meşcere yaşları arasında ölü örtü miktarı, TOK ve TA stokları arasında önemli farklılıklar olduğunu göstermiştir. 100 yaşından büyük göknar meşcerelerinin, genç göknar meşcerelerinden daha fazla ölü örtüye sahip olduğu tespit edilmiştir. Ölü örtü miktarı en yüksek 306 yaşındaki göknar (30.3 ton/ha), en düşük 100 yaşındaki göknar meşcerelerinde (3.95 ton/ha) belirlenmiştir. 0-30 cm derinlikte, 38 yaşındaki göknar meşceresi ile en yüksek TOK stokuna (166.7 ton/ha) sahip 57 yaşındaki göknar meşceresi hariç, 100 yaş ve üzerindeki göknar meşcerelerinde TOK ve TA stoku, daha genç olanlardan daha yüksek bulunmuştur. Sonuçlar, göknar meşcerelerinin ölü örtü miktarı, TOK ve TA stokları üzerinde meşcere yaşının önemli olduğunu göstermiş olup ilgili araştırmalarda meşcere yaşı dikkate alınmalıdır.

Determination of Changes in Soil Organic Carbon and Total Nitrogen Stocks under Different Stand Age of Kazdağı Fir (Abies nordmanniana subsp. equi-trojani (Steven) Spach)

Most of the carbon in forest ecosystems is stored in the forest litter and in the soil. Soil organic carbon (SOC) and total nitrogen (TN) stocks are, however, highly variable. Forest carbon stocks and fluxes vary with forest age, and relationships with forest age are often used to estimate fluxes for regional or national carbon inventories. Therefore, it is extremely important to determine the effect of stand age on SOC and TN stocks and the amount of tree species on the distribution. The objective of this study was to estimate SOC and TN stocks of Kazdağı fir (A. nordmanniana subsp. equi-trojani (Steven) Spach) in the northwest (Ilgaz) and northeast (Inebolu) of Kastamonu. Three sites of fir stand, aged 38, 57, 60, 66, 90, 100, 183, 250, 283 and 306 years were selected in pure fir forests. The results showed significant differences in the amounts of forest litter, SOC and TN stocks among the different stand ages. Kazdağı fir stands older than 100 years had much higher forest litter than the younger fir stands. The highest amount of forest litter was under the 306 years old fir stands (30.3 Mg ha-1) while the lowest amount of forest litter was under the 100 years old fir stands (3.95 Mg ha-1). When 0-30 cm soil depth was considered, the fir stands aged 100 and over generally showed higher SOC stocks than the fir stands younger than 100 years old, with the exception of 38 and 57 years old fir stands which had the highest SOC (166.7 Mg C ha-1). Similarly, for TN stocks, it was also seen that the fir stands aged 100 or over had higher TN stocks than the fir stands younger than 100 years old. Our results have indicated that the forest litter, SOC and TN stocks of fir stands are more dependent on stand age. Our results have indicated that the forest litter, SOC and TN stocks of fir stands are more dependent on stand age.

___

  • 1. Ahmad, A., Moazzam, N. S., Marwat K. B., Muhammad, J. (2016). Annual accumulation of carbon in the coniferous forest of Dir Kohistan: An inventory based estimate. Pak. J. Bot., 47, 115–118.
  • 2. Akbaş, B., Akdeniz, N., Aksay, A., Altun, İ., Balcı, V., Bilginer, E. vd. (2015). Türkiye Jeoloji Haritası Maden Tetkik ve Arama Genel Müdürlüğü Yayını, Ankara, Türkiye.
  • 3. Albrektson, A. (1988). Needle litterfall in stands of Pinus sylvestris L. in Sweden, in relation to site quality, stand age and latitude. Scandinavian Journal of Forest Research, 3(1-4), 333-342. https://doi.org/10.1080/02827588809382521
  • 4. Ali, A., Ahmad, A., Akhtar, K., Teng, M., Zeng, W., Yan, Z., Zhou, Z. (2019). Patterns of Biomass, carbon, and soil properties in Masson pine (Pinus massoniana Lamb) plantations with different stand ages and management practices. Forests, 10(8), 645.
  • 5. Allen, S. E. (1989). Chemical analysis of ecological materials. Blackwell, Oxford 6. Anonymous, (1999). Keys to Soil Taxonomy. USDA. SMSS. Technical Monograph No:19.
  • 7. Asplund, J., Hustoft, E., Nybakken, L., Ohlson, M., Lie, M. H. (2018). Litter impair spruce seedling emergence in beech forests: a litter manipulation experiment. Scandinavian journal of forest research, 33(4), 332-337. https://doi.org/10.1080/02827581.2017.1388440
  • 8. Berg, B., Johansson, M. B., Anta, R. C. D., Escudero, A., Gärdenäs, A., Laskowski, R., Madeira, M., Mälkönen, E., McClaugherty, C., Meentemeyer, V., Santo, A. V. D. (1995). The chemical composition of newly shed needle litter of Scots pine and some other pine species in a climatic transect. X Long-term decomposition in a Scots pine forest. Canadian Journal of Botany, 73(9), 1423-1435. https://doi.org/10.1139/b95-155
  • 9. Binkley, D. (1986). Forest nutrition management. John Wiley & Sons.
  • 10.Blake, G. R., Hartge, K. H. (1986). Bulk density 1. Methods of soil analysis: part 1-physical and mineralogical methods, (methodsofsoilan1), 363-375.
  • 11.Bonan, G. B. (2008). Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 320(5882), 1444-1449.
  • 12.Bonnevie-Svendsen, C., Gjems, O. (1957). Amount and chemical composition of the litter from larch, beech, Norway spruce and Scots pine stands and its effect on the soil. Meddelelser fra det norske skogforsøksvesen, 14, 111-174.
  • 13.Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils 1. Agronomy journal, 54(5), 464-465.
  • 14.Çepel, N. (1977). Türkiye'nin önemli yetişme bölgelerindeki saf sarıçam ormanlarının gelişimi ile bazı edafik ve fizyografik etkenler arasındaki ilişkiler. İstanbul Üniversitesi Orman Fakültesi Dergisi, 26(2), 25-64. https://dergipark.org.tr/tr/download/article-file/176769 (in Turkish research).
  • 15.Çepel, N., Dündar, M., Özdemir, T., Neyişçi, T. (1988). Kızılçam (Pinus brutia Ten.) Ekosistemlerinde İğne Yaprak Dökümü ve Bu Yolla Toprağa Verilen Besin Maddeleri Miktarları, Ormancılık Araştırma Enstitüsü Yayınları (in Turkish research).
  • 16.Chen, H. Y., Shrestha, B. M. (2012). Stand age, fire and clearcutting affect soil organic carbon and aggregation of mineral soils in boreal forests. Soil Biology and Biochemistry, 50, 149-157. https://doi.org/10.1016/j.soilbio.2012.03.014
  • 17.Clarke, N., Okland, T., Holt Hanssen, K., Nordbakken, J. F., Wasak, K. (2018). Short-term effects of hardened wood ash and nitrogen fertilisation in a Norway spruce forest on soil solution chemistry and humus chemistry studied with different extraction methods. Scandinavian Journal of Forest Research, 33(1), 32-39. https://doi.org/10.1080/02827581.2017.1337921
  • 18.Dangal, S. P., Das, A. K., Paudel, S. K. (2017). Effectiveness of management interventions on forest carbon stock in planted forests in Nepal. J. Environ. Manage. 196, 511–517
  • 19.De Koning, G. H. J., Veldkamp, E., López‐Ulloa,M. (2003). Quantification of carbon sequestration in soils following pasture to forest conversion in northwestern Ecuador. Global Biogeochemical Cycles, 17(4). https://doi.org/10.1029/2003GB002099
  • 20.Desjardins, T., Barros, E., Sarrazin,M., Girardin, C., Mariotti, A. (2004). Effects of forest conversion to pasture on soil carbon content and dynamics in Brazilian Amazonia. Agriculture, Ecosystems & Environment, 103(2), 365-373. https://doi.org/10.1016/j.agee.2003.12.008
  • 21.Duyar, A., Arslan, M., Kiniş, S. (2014). Bolu, Uludağ göknarı ormanlarında ölü örtü ve topraktaki karbon ile eklembacaklıların incelenmesi. Orman ve Su İşleri Bakanlığı Batı Karadeniz Ormancılık Araştırma Enstitüsü Müdürlüğü, Proje Sonuç Raporu, s.45, http://yayin.ogm.gov.tr/yaydepo/714.pdf Erişim tarihi: 25/02/2017.
  • 22. FAO, (2010). Global Forest Resources Assessment 2010. Main report.
  • 23.Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S. P., Asner, G. P., Cleveland, C. C., Green, P. A., Holland, E. A., Karl, D. M., Michaels, A. F., Porter, J. H., Townsend, A. R., Vörösmarty, C. J. (2004). Nitrogen cycles: Past, present and future. Biogeochemistry, 70, 153–226. doi:10.1007/s10533-004-0370-0
  • 24.Hennessey, T. C., Dougherty, P. M., Cregg, B. M., Wittwer, R. F. (1992). Annual variation in needle fall of a loblolly pine stand in relation to climate and stand density. Forest Ecology and Management, 51(4), 329-338. https://doi.org/10.1016/0378-1127(92)90332-4
  • 25.Hobbie, S. E. (2008). Nitrogen effects on decomposition: A five‐year experiment in eight temperate sites. Ecology, 89(9), 2633-2644.
  • 26.Hume, A., Chen, H. Y., Taylor, A. R., Kayahara, G. J., Man, R. (2016). Soil C: N: P dynamics during secondary succession following fire in the boreal forest of central Canada. Forest Ecology and Management, 369, 1-9.
  • 27. Jackson, M. L. (1962). Soil chemical analysis. (Constable and Company, Ltd: London).
  • 28. Jia, X., Shao, M. A., Zhu, Y., Luo, Y. (2017). Soil moisture decline due to afforestation across the Loess Plateau, China. Journal of Hydrology, 546, 113-122.
  • 29. Jiang, C. M., Yu, G. R., Fang, H. J., Cao, G. M., Li, Y. N. (2010). Short-term effect of increasing nitrogen deposition on CO2, CH4 and N2O fluxes in an alpine meadow on the Qinghai–Tibetan Plateau, China. Atmospheric Environment, 44, 2920–2926.
  • 30. Jobbágy, E. G., Jackson, R. B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological applications, 10(2), 423-436. https://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
  • 31. Jonard,M., Nicolas,M., Coomes, D. A., Caignet, I., Saenger, A., Ponette, Q. (2017). Forest soils in France are sequestering substantial amounts of carbon. Science of the Total Environment, 574, 616-628.
  • 32. Kantarcı, M. D. (1979). Aladağ kütlesinin (Bolu) kuzey aklanındaki Uludağ göknarı ormanlarındaki yükselti-iklim basamaklarına göre bazı ölü örtü toprak özelliklerinin analitik olarak araştırılması, İ.Ü. Orman Fakültesi Yayınları, Yayın No:2634.
  • 33.Kavvadias, V. A., Alifragis, D., Tsiontsis, A., Brofas, G., Stamatelos, G. (2001). Litterfall, litter accumulation and litter decomposition rates in four forest ecosystems in northern Greece. Forest Ecology and Management, 144(1), 113-127.
  • 34.Klopatek, J. M. (2002). Belowground carbon pools and processes in different age stands of Douglas-fir. Tree Physiology, 22(2-3), 197-204. https://doi.org/10.1093/treephys/22.2-3.197
  • 35.Köhler, L., Hölscher, D., Leuschner, C. (2008). High litterfall in old-growth and secondary upper montane forest of Costa Rica. Plant ecology, 199(2), 163-173.
  • 36. Lee, J., Hopmans, J. W., Rolston, D. E., Baer, S. G., Six, J. (2009). Determining soil carbon stock changes: simple bulk density corrections fail. Agriculture, Ecosystems & Environment, 134(3-4), 251-256. https://doi.org/10.1016/j.agee.2009.07.006
  • 37. Liu, X., Zhang, W., Cao, J., Shen, H., Zeng, X., Yu, Z., Zhao, X. (2013). Carbon storages in plantation ecosystems in sand source areas of North Beijing, China. PloS one, 8(12), e82208.
  • 38.Makineci, E. (1999). Araştırma Ormanındaki Baltalıkların Koruya Dönüştürülmesi İşlemlerinin Ölü Örtü ve Topraktaki Azot Değişimine Etkileri, Doktora Tezi, İstanbul Üniversitesi, 213s. İstanbul). (in Turkish Doctoral dissertation).
  • 39. Marin‐Spiotta, E. R. I. K. A., Silver, W. L., Swanston, C. W., Ostertag, R. (2009). Soil organic matter dynamics during 80 years of reforestation of tropical pastures. Global Change Biology, 15(6), 1584-1597. https://doi.org/10.1111/j.1365-2486.2008.01805.x
  • 40.McGrath, D. A., Smith, C. K., Gholz, H. L., de Assis Oliveira, F. (2001). Effects of land-use change on soil nutrient dynamics in Amazonia. Ecosystems, 4(7), 625-645.
  • 41.Neumann-Cosel, L., Zimmermann, B., Hall, J. S., van Breugel, M., Elsenbeer, H. (2011). Soil carbon dynamics under young tropical secondary forests on former pastures-A case study from Panama. Forest ecology and management, 261(10), 1625-1633. https://doi.org/10.1016/j.foreco.2010.07.023
  • 42. Pedersen, L. B., Bille-Hansen, J. (1999). A comparison of litterfall and element fluxes in even aged Norway spruce, sitka spruce and beech stands in Denmark. Forest ecology and management, 114(1), 55-70. https://doi.org/10.1016/S0378-1127(98)00381-8
  • 43.Ranger, J., Gerard, F., Lindemann, M., Gelhaye, D., Gelhaye, L. (2003). Dynamics of litterfall in a chronosequence of Douglas-fir (Pseudotsuga menziesii Franco) stands in the Beaujolais mounts (France). Annals of Forest Science, 60(6), 475-488. https://doi.org/10.1051/forest:2003041
  • 44.Richards, A. E., Dalal, R. C., Schmidt, S. (2007). Soil carbon turnover and sequestration in native subtropical tree plantations. Soil Biology and Biochemistry, 39(8), 2078-2090. https://doi.org/10.1016/j.soilbio.2007.03.012
  • 45. Sariyildiz, T. (2000). Biochemical and Environmental Controls of Litter Decomposition. PhD thesis.
  • 46. Sariyildiz, T. (2008). Effects of gap-size classes on long-term litter decomposition rates of beech, oak and chestnut species at high elevations in Northeast Turkey. Ecosystems, 11(6), 841-853. https://link.springer.com/article/10.1007/s10021-008-9164-x
  • 47. Sariyildiz, T., Akkuzu, E., Küçük, M., Duman, A., Aksu, Y. (2008). Effects of Ips typographus (L.) damage on litter quality and decomposition rates of Oriental Spruce [Picea orientalis (L.) Link.] in Hatila Valley National Park, Turkey. European journal of forest research, 127(5), 429. https://link.springer.com/article/10.1007/s10342-008-0226-6
  • 48. Sariyildiz, T., Savaci, G., Kravkaz, I. S. (2015). Effects of tree species, stand age and land-use change on soil carbon and nitrogen stock rates in northwestern Turkey. iForest-Biogeosciences and Forestry, 9(1), 165. https://doi.org/10.3832/ifor1567-008
  • 49. Sariyildiz, T., Tüfekçioğlu, A., Küçük, M. (2005). Comparison of decomposition rates of beech (Fagus orientalis Lipsky) and spruce (Picea orientalis (L.) Link) litter in pure and mixed stands of both species in Artvin, Turkey. Turkish Journal of Agriculture and Forestry, 29(6), 429-438.
  • 50. Savaci, G. (2017). Effects of land use type and stand age on some soil properties and organic carbon and total nitrogen stock capacity. PhD Thesis, Kastamonu University, Graduate School of Natural and Applied Sciences, Department of Forest Engineering, s.179, Turkey.
  • 51. Schimel, D. S., House, J. I., Hibbard, K. A., Bousquet, P., Ciais, P., Peylin, P., Braswell, B. H., Apps, M. J., Baker, D., Bondeau, A., et al. (2001). Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 414, 169–172.
  • 52. Seedre, M., Kopáček, J., Janda, P., Bače, R., Svoboda,M. (2015). Carbon pools in a montane old-growth Norway spruce ecosystem in Bohemian forest, effects of stand age and elevation. Forest Ecol. Manag. 346(2), 106–113.
  • 53. Sevgi, O., Makineci, E., Karaoz, O. (2011). The forest and mineral soil carbon pools of six different forest tree species. Ekoloji, 20(81),8-14. doi:10.5053/ekoloji.2011.812
  • 54.Tarnocai, C. (2009). The impact of climate change on Canadian peatlands. Canadian Water Resources Journal, 34(4), 453-466.
  • 55.Terakunpisut, J., Gajaseni, N., Ruankawe, N. (2007). Carbon sequestration potential in aboveground biomass of Thong Pha Phun National Forest, Thailand. Appl. Ecol. Environ. Res., 5, 93–102.
  • 56.Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical review, 38(1), 55-94.
  • 57. Tian, Y., Cao, J., Yang, X., Shan, N., Shi, Z. (2015). Patterns of carbon allocation in a chronosequence of Caragana intermedia plantations in the Qinghai-Tibet Plateau. iForest-Biogeosciences and Forestry, 8(6), 756. https://doi.org/10.3832/ifor1193-007
  • 58.Tolunay, D., Çömez, A. (2007). Orman topraklarında karbon depolanması ve Türkiye’deki durum. Küresel İklim Değişimi ve Su Sorunlarının Çözümünde Ormanlar Sempozyumu, 13-14. (in Turkish research)
  • 59.Vesterdal, L., Clarke, N., Sigurdsson, B. D., Gundersen, P. (2013). Do tree species influence soil carbon stocks in temperate and boreal forests?. Forest Ecology and Management, 309, 4-18.
  • 60.Vesterdal, L., Schmidt, I. K., Callesen, I., Nilsson, L. O., Gundersen, P. (2008). Carbon and nitrogen in forest floor and mineral soil under six common European tree species. Forest Ecology and Management, 255(1), 35-48. https://doi.org/10.1016/j.foreco.2007.08.015
  • 61.Vitousek, P. M., Howarth, R. W. (1991). Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry, 13(2), 87-115. https://www.jstor.org/stable/1468901
  • 62. Zhou, W., Gong, P., Gao, L. (2017). A Review of Carbon Forest Development in China. Forests, 8, 295.
Bartın Orman Fakültesi Dergisi-Cover
  • ISSN: 1302-0943
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1998
  • Yayıncı: Bartın Üniversitesi Orman Fakültesi