2017-2018 Türkiye Kar Sezonu İçin MODIS Etkili Kar Örtüsü Ürününün Sentinel 2 Görüntüleriyle Doğrulaması

Bu çalışmanın ana amacı Orta Çözünürlüklü Görüntüleme Spektroradyometresi (Moderate Resolution Imaging Spectroradiometer - MODIS)’ne ait etkili kar kaplı alan (EKKA) ürününün Türkiye üzerinde sürekli doğrulama çalışmalarının yapılabilmesi amacıyla Sentinel 2 uydu görüntülerinin uygunluğunun değerlendirilmesidir. Çalışmanın ilk aşamasında, üç farklı ikili kar haritalama algoritması uygulanarak elde edilen Sentinel 2 ikili kar örtüsü haritaları, yer istasyonlarından elde edilen kar derinliği ölçümleri ile test edilmiştir. Sentinel 2 ikili kar haritalarının performansını değerlendirmek için Kasım 2017 ile Nisan 2018 arasında çekilen 205 Sentinel 2 görüntüsü ile 75 yer gözlem istasyonundan alınan 286 kar derinliği ölçümü kullanılmıştır. Üç farklı ikili kar haritalama algoritmasının, POD ≥ 0,86, FAR ≤ 0,08 ve ACC ≥ 0,82 değerleri ile saha bazlı kar derinliği verileriyle yüksek uyum içinde olduğu tespit edilmiştir. İkinci aşamada, 2017-2018 Türkiye kar sezonuna ait 206 MODIS EKKA görüntüsü, Sentinel 2 ikili kar haritalarından elde edilen referans EKKA haritaları kullanılarak test edilmiştir. Analizlerde kullanılan Sentinel 2 görüntüler, bulutluluk oranı maksimum %30 olacak şekilde seçilmiştir. Genel sonuçlar, MODIS EKKA ürünü olan MOD10A1'in RMSE = 0,13 ve R = 0,88 değerleri ile oldukça iyi bir performans sergilediğini göstermiştir. Ay bazlı performans metrikleri analiz edildiğinde, MOD10A1 ürününün doğruluğunun Nisan ayında düştüğü ve bu davranışın temel olarak erime süresi boyunca yamalı kar örtüsüne bağlandığı gözlenmiştir. Buna ek olarak, MOD10A1'in ormanlık alanlarda daha düşük performans sergilediği, ancak makilik ve karışık tarım arazilerinin hakim olduğu alanlarda doğruluğunun yüksek olduğu bulunmuştur.

Validation of MODIS Fractional Snow Cover Product for 2017-2018 Snow Season in Turkey by using Sentinel 2 Imagery

This study mainly focuses on investigating the suitability of Sentinel 2 data for the continuous validation efforts of fractional snow cover (FSC) product of Moderate Resolution Imaging Spectroradiometer (MODIS) over Turkey. In the first stage of the study, Sentinel 2 binary snow cover maps obtained by applying three different binary snow mapping algorithms were tested against in-situ snow depth measurements. In total, 205 Sentinel 2 images taken between November 2017 and April 2018, 286 snow depth measurement from 75 ground observation stations were used to assess the performance of Sentinel 2 binary snow maps. All three binary snow mapping algorithms were in good agreement with in-situ snow depth data with POD ≥ 0.86, FAR ≤ 0.08 and ACC ≥ 0.82. In the second stage, 206 MODIS FSC images for the 2017-2018 snow season over Turkey were tested by using reference FSC maps generated from Sentinel 2 binary snow maps. Sentinel 2 images used in the analyzes were selected so that the cloud contamination rate on each scene was maximum 30%. Overall results indicated that MODIS FSC product, namely, MOD10A1 exhibited quite good performance with RMSE = 0.13 and R = 0.88. When the monthly-based performance metrics were analyzed it was observed that the accuracy of MOD10A1 product degraded in April and this behavior was mainly attributed to the patchy snow cover during the melting period. Additionally, MOD10A1 was found to exhibit poorer performance over forested areas, whereas its accuracy was high over areas dominated by savannas and mixed agricultural lands.

___

  • 1. Appel, I. (2018). Uncertainty in satellite remote sensing of snow fraction for water resources management. Frontiers of Earth Science, 12(4): 711-727.
  • 2. Crawford, C. J. (2015). MODIS Terra Collection 6 fractional snow cover validation in mountainous terrain during spring snowmelt using Landsat TM and ETM+. Hydrological Processes, 29(1): 128-138.
  • 3. Dong, J., Peters-Lidard, C. (2010). On the Relationship Between Temperature and MODIS Snow Cover Retrieval Errors in the Western U.S. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3(1): 132-140.
  • 4. Doswell III, C. A., Davies-Jones, R., Keller, D. L. (1990). On summary measures of skill in rare event forecasting based on contingency tables. Weather and forecasting, 5(4): 576-585.
  • 5. Dwyer, J., Schmidt, G. (2006). The MODIS Reprojection Tool. In J. J. Qu, W. Gao, M. Kafatos, R. E. Murphy ve V. V. Salomonson (Eds.), Earth Science Satellite Remote Sensing: Vol. 2: Data, Computational Processing, and Tools (162-177). Berlin, Heidelberg: Springer Berlin Heidelberg.
  • 6. Frei, A., Tedesco, M., Lee, S., Foster, J., Hall, D. K., Kelly, R., Robinson, D. A. (2012). A review of global satellite-derived snow products. Advances in Space Research, 50(8): 1007-1029.
  • 7. Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., Huang, X. (2010). MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sensing of Environment, 114(1): 168-182.
  • 8. Gatti, A., Galoppo, A. (2018). Sentinel-2 Products Specification Document (Issue: 14.5). Thales Alenia Space. WEB, https://sentinel.esa.int/documents/247904/685211/Sentinel-2-Products-Specification-Document (20.01.2019).
  • 9. Hall, D., Foster, J., Verbyla, D., Klein, A., Benson, C. (1998). Assessment of snow-cover mapping accuracy in a variety of vegetation-cover densities in central Alaska. Remote Sensing of Environment, 66(2): 129-137.
  • 10.Hall, D. K., Martinec, J. (1985). Remote Sensing of Ice and Snow. USA: Chapman and Hall.
  • 11.Hall, D. K., Riggs, G. A., Salomonson, V. V. (1995). Development of Methods for Mapping Global Snow Cover Using Moderate Resolution Imaging Spectroradiometer Data. Remote Sensing of Environment, 54: 127-140.
  • 12.Hall, D. K., Riggs, G. A., Salomonson, V. V., DiGirolamo, N. E., Bayr, K. J. (2002). MODIS snowcover products. Remote Sensing of Environment, 83: 181-194.
  • 13.Hüsler, F., Jonas, T., Wunderle, S., Albrecht, S. (2012). Validation of a modified snow cover retrieval algorithm from historical 1-km AVHRR data over the European Alps. Remote Sensing of Environment, 121: 497-515.
  • 14.Klein, A. G., Barnett, A. C. (2003). Validation of daily MODIS snow cover maps of the Upper Rio Grande River Basin for the 2000–2001 snow year. Remote Sensing of Environment, 86(2): 162-176.
  • 15.Kuter, S., Akyurek, Z., Weber, G. W. (2018). Retrieval of fractional snow covered area from MODIS data by multivariate adaptive regression splines. Remote Sensing of Environment, 205: 236-252.
  • 16. López-Moreno, J. I., Fassnacht, S .R., Heath, J. T., Musselman, K. N., Revuelto, J., Latron, J., Morán-Tejeda, E., Jonas, T. (2013). Small scale spatial variability of snow density and depth over complex alpine terrain: Implications for estimating snow water equivalent. Advances in Water Resources, 55: 40-52.
  • 17. Louis, J. (2018). Sentinel-2 S2 MPC L2A Product Definition Document, WEB, https://sentinels.copernicus.eu/documents/247904/685211/S2+L2A+Product+Definition+Document/2c0f6d5f-60b5-48de-bc0d-e0f45ca06304 (25.07.2019).
  • 18. Louis, J., Debaecker, V., Pflug, B., Main-Korn, M., Bieniarz, J., Mueller-Wilm, U., Cadau, E., Gascon, F. (2016). Sentinel-2 Sen2Cor: L2A Processor for Users, Living Planet Symposium, 9–13 May 2016, Prague, Czech Republic.
  • 19. Marchane, A., Jarlan, L., Hanich, L., Boudhar, A., Gascoin, S., Tavernier, A., Filali, N., Le Page, M., Hagolle, O., Berjamy, B. (2015). Assessment of daily MODIS snow cover products to monitor snow cover dynamics over the Moroccan Atlas mountain range. Remote Sensing of Environment, 160: 72-86.
  • 20. Metsämäki, S., Ripper, E., Mattila, O.-P., Fernandes, R., Bippus, G., Luojus, K., Nagler, T., Bojkov, B. (2016). Evaluation of Northern Hemisphere Snow Extent products within ESA SnowPEx-project, IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2016), Beijing, China.
  • 21. Parajka, J., Blöschl, G. (2006). Validation of MODIS snow cover images over Austria. Hydrology and Earth System Sciences Discussions, 3(4): 1569-1601.
  • 22. Parajka, J., Blöschl, G. (2008). Spatio‐temporal combination of MODIS images–potential for snow cover mapping. Water Resources Research, 44(3): 1-13.
  • 23. Parajka, J., Holko, L., Kostka, Z., Blöschl, G. (2012). MODIS snow cover mapping accuracy in a small mountain catchment–comparison between open and forest sites. Hydrology and Earth System Sciences 16(7): 2365-2377.
  • 24. Parajka, J., Pepe, M., Rampini, A., Rossi, S., Blöschl, G. (2010). A regional snow-line method for estimating snow cover from MODIS during cloud cover. Journal of Hydrology, 381(3-4): 203-212.
  • 25. Pirazzini, R., Leppänen, L., Picard, G., Lopez-Moreno, J., Marty, C., Macelloni ,G., Kontu. A., von Lerber, A., Tanis, C., Schneebeli, M. J. S. (2018). European in-situ snow measurements: Practices and purposes, 18(7): 2016.
  • 26. Poon, S. K., Valeo, C. (2006). Investigation of the MODIS snow mapping algorithm during snowmelt in the northern boreal forest of Canada. Canadian Journal of Remote Sensing, 32(3): 254-267.
  • 27.Raleigh, M. S., Livneh, B., Lapo, K., Lundquist, J. D. (2016). How Does Availability of Meteorological Forcing Data Impact Physically Based Snowpack Simulations? Journal of Hydrometeorology, 17(1): 99-120.
  • 28. Riggs, G. A., Hall, D. K. (2016). MODIS/Terra Snow Cover Daily L3 Global 500m Grid, Version 6. National Snow and Ice Data Center Distributed Active Archive Center, WEB, https://nsidc.org/data/MOD10A1/versions/6 (24.09.2019).
  • 29.Riggs, G. A., Hall, D. K., Román, M. O. (2016). MODIS Snow ProductsCollection 6 User Guide Version 1.0, WEB, https://modis-snow-ice.gsfc.nasa.gov/uploads/C6_MODIS_Snow_User_Guide.pdf (04.02.2019).
  • 30.Rodell, M., Houser, P. (2004). Updating a land surface model with MODIS-derived snow cover. Journal of Hydrometeorology, 5(6): 1064-1075.
  • 31. Salomonson, V. V., Appel, I. (2004). Estimating fractional snow cover from MODIS using the normalized difference snow index. Remote Sensing of Environment, 89: 351-360.
  • 32. Salomonson, V. V., Appel, I. (2006). Development of the Aqua MODIS NDSI Fractional Snow Cover Algorithm and Validation Results. IEEE Transactions on Geoscience and Remote Sensing, 44: 1747-1756.
  • 33. Shamir, E., Georgakakos, K. P. (2006). Distributed snow accumulation and ablation modeling in the American River basin. Advances in Water Resources, 29(4): 558-570.
  • 34. Şorman, A., Akyürek, Z., Şensoy, A., Şorman, A., Tekeli, A. (2007). Commentary on comparison of MODIS snow cover and albedo products with ground observations over the mountainous terrain of Turkey. Hydrology and Earth System Sciences, 11(4): 1353-1360.
  • 35. Sürer, S., Akyürek, Z. (2012). Evaluating the utility of the EUMETSAT HSAF snow recognition product over mountainous areas of eastern Turkey. Hydrological Sciences Journal, 57(8): 1684-1694.
  • 36.Tekeli, A. E., Akyürek, Z., Şorman, A. A., Şensoy, A., Şorman, Ü. (2005). Using MODIS snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey. Remote Sensing of Environment, 97: 216-230.
  • 37.URL-1. (2008). Guide to Meteorological Instruments and Methods of Observation. World Meteorological Organisation, WEB, https://library.wmo.int/pmb_ged/wmo_8_en-2012.pdf (22.02.2019).
  • 38.Vermote, E. F., Kotchenova, S. Y., Ray, J. P. (2011). MODIS surface reflectance user’s guide - Version 1.3. MODIS Land Surface Reflectance Science Computing Facility, WEB, http://modissr. ltdri.org/guide/MOD09_UserGuide_v1.4.pdf (24.09.2019).
  • 39. Viviroli, D., Archer, D. R., Buytaert, W., Fowler, H. J., Greenwood, G. B., Hamlet, A. F., Huang, Y., Koboltschnig, G., Litaor, M. I., López-Moreno, J. I., Lorentz, S., Schädler, B., Schreier, H., Schwaiger, K., Vuille, M., Woods, R. (2011). Climate change and mountain water resources: overview and recommendations for research, management and policy. Hydrology and Earth System Sciences, 15(2): 471-504.
  • 40.Wang, X., Xie, H., Liang, T. (2008). Evaluation of MODIS snow cover and cloud mask and its application in Northern Xinjiang, China. Remote Sensing of Environment, 112(4): 1497-1513.
  • 41.Wang, X., Xie, H., Liang, T., Huang, X. (2009). Comparison and validation of MODIS standard and new combination of Terra and Aqua snow cover products in northern Xinjiang, China. Hydrological Processes: An International Journal, 23(3): 419-429.