Yükseköğretim sınıflarında iç ortam sıcaklığı ve bağıl nem düzeyinin analizi: Balıkesir Üniversitesi Örneği

Sınıflarda, öğrencilerin bilgiyi algılamasına ve işlemesine yardımcı olmak için konfor koşullarının sağlanması önemli bir ihtiyaçtır. Bu nedenle yapı fiziği açısından doğru bina ve mekan tasarımları gerekmektedir. Aksi takdirde eğitim binalarında konforsuz iç mekanlar oluşabilir ve gereksiz enerji tüketimi gerçekleşebilir. Bu çalışma, Balıkesir üniversitesinin doğal olarak havalandırılan beş sınıfında iç ortam sıcaklık ve bağıl nem değerlerini kullanarak ısıl konforu değerlendirmeyi amaçlamaktadır. Kullanım içi ve dışı saatler dahil olmak üzere parametreler iki aylık süre boyunca 15 dakika aralıklarla kaydedilmiştir. Daha sonra bu veriler excel ve spss programları aracılığıyla istatiksel olarak analiz edilmiş ve uluslarası standartlar ile karşılaştırılmıştır. Elde edilen sonuçlara göre sıcaklık değerleri Şubat ayında ısıtma sistemi nedeniyle genellikle 22-25⁰C aralığında seyretmiştir. Mayıs ayında ise iç ortam sıcaklıkları çoğunlukla 25⁰C’nin üzerine çıkmıştır. Bağıl nem değerleri her iki ayda da ASHRAE Standardı 62.1–2007’da önerildiği gibi %65 sınır değerini önemli ölçüde aşmamaktadır. Ayrıca sınıflar arasında sıcaklık değişimin de anlamlı farkların olduğu bulunmuştur (p

Analysis of indoor temperature and relative humidity level in higher education classes: Balıkesir University Example

It is an important need that classrooms provide comfortable learning environments to help students perceive and process information. For this reason, correct building and space designs are required in terms of building physics. Otherwise, uncomfortable interior spaces and unnecessary energy consumption will occur in educational buildings. This study aims to evaluate thermal comfort by using indoor temperature and relative humidity values in five naturally ventilated classes of Balıkesir University. The parameters, including the hours in and out of use, were recorded at 15-minute intervals over a two-month period. Later, these data were analyzed statistically through Excel and SPSS programs and compared with international standards. According to the results, temperature values were generally in the range of 22-25⁰C in February due to the heating system. In May, indoor temperatures mostly exceeded 25°C. Relative humidity values do not significantly exceed the 65% limit value every two months, as recommended in ASHRAE Standard 62.1-2007. It was also found that there are significant differences in temperature change between classes (p

___

  • Majd, E., McCormack, M., Davis, M., Curriero, F., Berman, J., Connolly, F., Leaf, P., Rule, A., Green, T., Clemons-Erby, D., Gummerson, C. ve Koehler, K., Indoor air quality in inner-city schools and its associations with building characteristics and environmental factors, Environmental Research, 170, 83–91, (2019).
  • Bakó-Biró, Z., Clements-Croome, D.J., Kochhar, N., Awbi, H.B. ve Williams, M.J., Ventilation rates in schools and pupils’ performance, Building and Environment, 48, 215–223, (2012).
  • Che, W.W., Tso, C.Y., Sun, L., Ip, D.Y.K., Lee, H., Chao, C.Y.H. ve Lau, A.K.H., Energy consumption, indoor thermal comfort and air quality in a commercial office with retrofitted heat, ventilation and air conditioning (HVAC) system, Energy and Buildings, 201, 202–215, (2019).
  • Heracleous, C. ve Michael, A., Experimental assessment of the impact of natural ventilation on indoor air quality and thermal comfort conditions of educational buildings in the Eastern Mediterranean region during the heating period, Journal of Building Engineering, 26, 100917, (2019).
  • de Abreu-Harbich, L.V., Chaves, V.L.A. ve Brandstetter, M.C.G.O., Evaluation of strategies that improve the thermal comfort and energy saving of a classroom of an institutional building in a tropical climate, Building and Environment, 135, 257–268, (2018).
  • Teli, D., Bourikas, L., James, P.A.B. ve Bahaj, A.S., Thermal performance evaluation of school buildings using a children-based adaptive comfort model, Procedia Environmental Sciences, 38, 844–851, (2017).
  • Gupta Rajat, A.H. C.T. ve John, O’Brien., Improving productivity in the workplace –lessons learnt and insights from the whole life performance plus project, (2018). http://www.bco.org.uk/Research/Publications/Improving_Productivity_in_the_Workplace.aspx, (05.09.2020).
  • Duarte, R., Glória Gomes, M. ve Moret Rodrigues, A., Estimating ventilation rates in a window-aired room using Kalman filtering and considering uncertain measurements of occupancy and CO2 concentration, Building and Environment, 143, 691–700, (2018).
  • M. Griffiths ve M. Eftekhari, Control of CO2 in a naturally ventilated classroom, Energy and Buildings, 40, 556–560, (2008).
  • Nguyen, A.T., Singh, M.K. ve Reiter, S., An adaptive thermal comfort model for hot humid South-East Asia, Building and Environment, 56, 291–300, (2012).
  • Corgnati, S.P., Filippi, M. ve Viazzo, S., Perception of the thermal environment in high school and university classrooms: Subjective preferences and thermal comfort, Building and Environment, 42, 951–959, (2007).
  • Sarbu, I. ve Pacurar, C., Experimental and numerical research to assess indoor environment quality and schoolwork performance in university classrooms, Building and Environment, 93, 141–154, (2015).
  • Mishra, A.K. ve Ramgopal, M., A thermal comfort field study of naturally ventilated classrooms in Kharagpur, India, Building and Environment, 92, 396–406, (2015).
  • Zaki, S.A., Damiati, S.A., Rijal, H.B., Hagishima, A. ve Abd Razak, A., Adaptive thermal comfort in university classrooms in Malaysia and Japan, Building and Environment, 294–306, 122, (2017).
  • Singh, M.K., Kumar, S., Ooka, R., Rijal, H.B., Gupta, G. ve Kumar, A., Status of thermal comfort in naturally ventilated classrooms during the summer season in the composite climate of India, Building and Environment, 128, 287–304, (2018).
  • Mustapa, M.S., Zaki, S.A., Rijal, H.B., Hagishima, A. ve Ali, M.S.M., Thermal comfort and occupant adaptive behaviour in Japanese university buildings with free running and cooling mode offices during summer, Building and Environment, 105, 332–342, (2016).
  • López-Pérez, L.A., Flores-Prieto, J.J. ve Ríos-Rojas, C., Adaptive thermal comfort model for educational buildings in a hot-humid climate, Building and Environment, 150, 181–194, (2019).
  • 15251 Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics, (2007).
  • ASHRAE Standard 55: Thermal environmental conditions for human occupancy, (2010).
  • ISO 7730: Moderate thermal environments - determination of the PMV and PPD indices and specification of the conditions for thermal comfort, (2005).
  • ANSI/ASHRAE Standard 62.1: Ventilation for acceptable indoor air quality, (2007).
  • CEN - CR 1752 Ventilation for buildings - design criteria for the indoor environment, (1998).
  • http://izmir.mgm.gov.tr/FILES/iklim/balikesir_iklim.pdf, (10.08.2020).
Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1301-7985
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1999
  • Yayıncı: Balıkesir Üniversitesi