Nar kabuğu destekli NH2/PdMnAg katalizörü varlığında sodyum bor hidrürün metanolizinin araştırılması

Bu çalışmada, organik atık kaynaklarından olan nar kabuğu, katalizör üretimi için ilk kez doğrudan destek malzemesi olarak kullanılmıştır. Amaç, yenilenebilir bir enerji kaynağı olan hidrojen üretimi için kullanılabilecek metal içeren katalizörlerde kullanılacak olan destek maddesini doğrudan kullanarak yüksek etkinliğe sahip bir katalizör sentezlemektir. Çalışma kapsamında toz haline getirilmiş nar kabuğu üzerine etanol eklenerek, daha sonra üzerine sırasıyla belirli oranlarda (0.3 Pd (mg metal/g katalizör)), (0.15 Mn ( mg metal/g katalizör)), (0.075 Ag ( mg metal/g katalizör)) ve 3-aminopropiltrimetoksisilan ilave edilerek katalizör sentezlenmiştir. Son olarak, elde edilen katalizör sodyum bor hidrürün metanoliz reaksiyonunda hidrojen üretiminde kullanılmak üzere performansı test edilmiştir. Yapılan deneylerde Nar Kabuğu-NH2/PdMnAg (PP-NH2/PdMnAg) katalizörünün farklı NaBH4 miktarı (%1, %2.5, %5, ve %7.5), farklı katalizör miktarları (0.05, 0.1, 0.15, ve 0.25 g) ve farklı sıcaklıklarda (30, 40, 50, 60 oC) denenerek performans deneyleri tamamlanmıştır. Ayrıca üretilen katalizörün karakterizasyonu için FTIR ve ICP-OES analizleri yapılmıştır. Sonuç olarak PP-NH2/PdMnAg katalizörü tarafından katalize edilen % 2.5 NaBH4 metanoliz reaksiyonunda 30 ve 60 °C için reaksiyon hızları sırasıyla 7209.4 ve 11334 mLdak-1g.kat-1 olarak bulunmuştur. PP-NH2/PdMnAg katalizörünün aktivasyon enerjisi ise 22,56 kJ mol-1 olarak hesaplanmıştır. Yeniden kullanılabilirlik deneyleri de aynı koşullar altında beş kez tekrarlanmış ve her kullanımda neredeyse % 100 dönüşüm elde edilmiştir.

Investigation of sodium borohydride methanolysis in the presence of pomagranate peel supported NH2/PdMnAg catalyst

In this study, pomegranate peel, one of the organic waste sources, was used for the first time as a direct support material for catalyst production. The aim is to synthesize a high efficiency catalyst using directly the support material to be used in metal containing catalysts that can be used for the production of hydrogen. Within the scope of the study, the catalyst was synthesized by adding ethanol on the powdered pomegranate peel and adding certain proportions (0.3 Pd (mg metal/g catalyst)), (0.15 Mn ( mg metal/g catalyst)), (0.075 Ag ( mg metal/g catalystr)) and 3-aminopropyltrimethoxysilane respectively. Finally, the performance of the obtained catalyst sodium boron hydride for the production of hydrogen by the methanolis reaction was tested. The effect of the amount of NaBH4 was investigated with 1%, 2.5%, 5%, and 7.5% ratio of NaBH4 while the influence of the concentration of catalyst was carried-out at 0.05, 0.1, 0.15, and 0.25 g catalysts. Four different temperatures were tested (20, 30, 40, 50 and 60 °C) to examined the performance of the catalyst under different temperatures. In addition, FTIR and ICP-OES analyzes were carried out for characterization of the produced catalyst. As a result, the reaction rates for 30 and 60 ° C in the 2.5% NaBH4 methanolisation catalyzed by the PP-NH2 / PdMnAg catalyst were found to be 7209.4 and 11334 mLmin-1g.cat-1, respectively. The activation energy of PP-NH2/PdMnAg catalyst was calculated as 22.56 kJ mol-1. Also, reusability experiments were repeated five times under the same conditions and almost 100% conversion was achieved with each use.

___

  • [1] Zerta, M., Schmidt, P.R., Stiller, C., Landinger, H., Alternative World Energy Outlook (AWEO) and the role of hydrogen in a changing energy landscape, International Journal of Hydrogen Energy, 33, 3021–3025, (2008).
  • [2] Jean-Baptistea, P., Ducroux, R., Energy policy and climate change, Energy Policy, 31, 155–166, (2003).
  • [3] Ibrahim, S.M., Hydrogen storage in proton conductive perovskite-type oxides and their application, Korean J Chem. Eng., 31, 1792-7. (2014).
  • [4] Muradov, N.Z., Veziroglu, TN., Green path from fossil-based to hydrogen economy: an overview of carbonneutral Technologies, Int. J. Hydrogen Energy, 33, (6804-39), (2008).
  • [5] Schlapbach, L., Andreas, Z. Hydrogen-storage materials for mobile applications, Nature, 414, 353-358, (2001).
  • [6] Ozay, O., Aktas, N., Inger, E., Sahiner, N., Hydrogel assisted nickel nanoparticle synthesis and their use in hydrogen production from sodium boron hydride, Int J Hydrogen Energy, 36, 1998-2006, (2011).
  • [7] Zhu, J., Li, R., Niu, W., Wu, Y., Gou, X., Fast hydrogen generation from NaBH4 hydrolysis catalyzed by carbon, International Journal of Hydrogen Energy, 38, 10864-10870, (2013).
  • [8] Fernandes, V.R., Pinto, A.M.F.R., Rangel, C.M., Hydrogen production from sodium borohydride in methanol-water mixtures, Int. J. Hydrogen Energy, 35, 9862-9868. (2010).
  • [9] Lo, C.T.F., Karan, K., Davis, B.R., Kinetic studies of reaction between sodium borohydride and methanol, water, and their mixtures, Ind. Eng. Chem. Res., 46, 5478-5484, (2007).
  • [10] Nurettin S., Modified multi-wall carbon nanotubes as metal free catalyst for application in H2 production from methanolysis of NaBH4, Journal of Power Sources, 366, 178-184, (2017)
  • [11] Gao, P., Wang Y., Yang S., Chen Y., Xue Z., Wang L., Mechanical alloying preparation of fullerene like Co3C nanoparticles with high hydrogen storage ability, Int. J. Hydrogen Energy, 37, 17126–17130, (2012).
  • [12] Wang, Y., Liu J., Wang K., Chen T., Tan X., Li, C.M., Hydrogen storage in Ni– B nanoalloy-doped 2D graphene, Int. J. Hydrogen Energy, 36, 12950–12954, (2011).
  • [13] Barghi, S.H., Tsotsis T.T., Sahimi M., Chemisorption, physisorption and hysteresis during hydrogen storage in carbon nanotubes, Int. J. Hydrogen Energy, 39, 1390–1397, (2014).
  • [14] Chamoun, R., Demirci, U.B., Zaatar, Y., Khoury, A., Miele, P., Co-aAl2O3-Cu as shaped catalyst in NaBH4 hydrolysis, Int. J. Hydrogen Energy, 35, 6583- 6591, (2010).
  • [15] Demirci, S., Sunol, A.K., Sahiner, N., Catalytic activity of amine functionalized titanium dioxide nanoparticles in methanolysis of sodium borohydride for hydrogen generation, Applied Catalysis B: Environmental, 261, 118242, (2020).
  • [16] Zhai, X., Zhu, C., Li Y., Zhang, Y., Duan, Z., Yang, X., Optimization for pectinase-assisted extraction of polysaccharides from pomegranate peel with chemical composition and antioxidant activity, International Journal of Biological Macromolecules, 109 244–253, (2018).
  • [17] Zhao, L.Y., Dong, Y.H., Chen, G.T., Hu, Q.H., Extraction, purification, characterization and antitumor activity of polysaccharides from Ganoderma lucidum, Carbohydr. Polym., 80, 783-789, (2010).
  • [18] Zhao, B.T., Zhang, J., Guo, X., Wang, J.L., Microwave-assisted extraction, chemical characterization of polysaccharides from Lilium davidii var. unicolor Salisb and its antioxidant activities evaluation, Food Hydrocolloids, 31, 346-356, (2013).
  • [19] Ying, Z. Han, X., Li, J., Ultrasound-assisted extraction of polysaccharides from mulberry leaves, Food Chem., 127, 1273-1279, (2011).
  • [20] Demjen, Z., Pukanszky, B., Nagy, Jr.J., Possible coupling reactions of functional silanes and polypropylene, Polymer, 40, 1763–1773, (1999).
  • [21] Pang, A.L., Ismail, H., Tensile properties, water uptake and thermal properties of polypropylene/waste pulverized tire/kenaf (PP/WPT/KNF) composite, BioResources, 8(1), 806-817, (2013).
  • [22] Saka, C., Kaya, M., Bekirogullari, M., Spirulina Platensis microalgae strain modified with phosphoric acid as a novel support material for CoB catalysts: Its application to hydrogen production, International Journal of Hydrogen Energy, 45, 2872-2883, (2020).
  • [23] Duman, F., Atelge, M.R., Kaya, M., Atabani, A.E., Kumar, G., Sahin, U., Unalan, S., A novel Microcystis aeruginosa supported manganese catalyst for hydrogen generation through methanolysis of sodium borohydride, International Journal of Hydrogen Energy, 45, 12755-12765, 2020.
  • [24] Saka, C., Kaya, M., Bekiroğullari, M., Spirulina microalgal strain as efficient a metal‐free catalyst to generate hydrogen via methanolysis of sodium borohydride, Int. J. Energy Res. 44, 402–410, 2020.
  • [25] Kaya, M., Production of metal-free catalyst from defatted spent coffee ground for hydrogen generation by sodium borohyride methanolysis, International Journal of Hydrogen Energy, 45, 12731- 12742, 2020.
  • [26] Kaya, M., NiB loaded acetic acid treated microalgae strain (Spirulina Platensis) to use as a catalyst for hydrogen generation from sodium borohydride methanolysis, Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 41, 20, 2549–2560, (2019).
  • [27] Liang, J., Li, Y., Huang, Y., Yang, J., Tang, H., Wei, Z., Shen, K.P., Sodium borohydride hydrolysis on highly efficient Co–B/Pd catalysts, Int. J. Hydrogen Energy, 33, 4048–4054, (2008).
  • [28] Zhao, Y., Ning, N., Tian, J., Wang, H., Liang, X., Nie, S., Yu, Y., Li, X., Hydrogen generation by hydrolysis of alkaline NaBH4 solution on Co–Mo–Pd–B amorphous catalyst with efficient catalytic properties, J. Power Sources, 207, 120–126, 2012.