MIG-MAG Kaynağında Duman Oluşumu

İmalat sektöründe geniş bir kullanım alanına sahip olan MIG-MAG kaynağı, bu prosesin doğası gereği, oldukça fazla miktarda zehirli ve sağlığa zararlı gaz-duman meydana getirmektedir. Dumanın kompozisyonu ve partiküllerin büyüklüğü kadar açığa çıkan dumanın miktarı da çalışan sağlığı açısından önem arz etmektedir. Duman miktarını belirlemek için özel olarak imal edilmiş duman kabini düzeneğinde deneyler gerçekleştirilmektedir. MIG-MAG kaynağında duman oluşum hızı (miktarı) üzerine çalışmalar yapan araştırmacılar, farklı koruyucu gaz kompozisyonlarının ve debilerinin, akım şiddetlerinin, ark gerilimlerinin, kaynak hızlarının ve serbest tel boylarının duman oluşum hızına olan etkilerini incelemişlerdir

Fume Formation In Gas Metal Arc Welding

Gas metal arc welding, which is widely utilized in manufacturing industry, generates significant amount of toxic and unhealthy gas-fume as a nature of this process. Besides fume composition and particle size, fume amount generated also is of importance in terms of worker’s health. In order to determine fume amount, experiments are realized in custom built fume chamber. Researchers, who studied fume formation rate in GMAW, have investigated the effects of different shielding gas compositions and flow rates, current intensities, arc voltages, welding speeds and wire electrode stick-out length on fume formation rate

___

  • [1] Oğuz, B., Ark kaynağı, Oerlikon Yayını, İstanbul, (1986).
  • [2] Pires, I., Quintino, L., Amaral, V. ve Rosado, T., Reduction of fume and gas emissions using innovative gas metal arc welding variants, International Journal of Advanced Manufacturing Technology, 50: 557-567, (2010).
  • [3] Pires, I., Quintino, L. ve Miranda, R.M., Analysis of the influence of shielding gas mixtures on the gas metal arc welding metal transfer modes and fume formation rate, Materials&Design, 28: 1623-1631, (2007).
  • [4] Norrish, J., Fume generation and control in GMA welding, 6 th International Trends in Welding Research Conference Proceedings, 349-356, Pine Mountain, GA, U.S.A., (2002).
  • [5] Carpenter, K.R., Monaghan, B.J. ve Norrish, J., Influence of shielding gas on fume size morphology and particle composition for gas metal arc welding, ISIJ International, vol.48, no.11, 1570-1576, (2008).
  • [6] U.S. Environmental Protection Agency (EPA), AP42 Volume I, Fifth Edition, Chapter 12.19 Electric Arc Welding Final Section, (1995) http://www.epa.gov/ttn/chief/ap42/ch12/final/c12s19.pdf 17.12.2012
  • [7] Pires, I., Quintino, L., Miranda, R.M. ve Gomes, J.F.P., Fume emissions during gas metal arc welding, Toxicological & Enviromental Chemistry, 88 (3): 385- 394, (2006).
  • [8] Zimmer, A.T. ve Biswas, P., Characterization of the aerosols resulting from arc welding processes, Journal of Aerosol Science, 32, 993-1008, (2001).
  • [9] ISO 15011-1:2009 (E) – Health and safety in welding and allied processes – Laboratory method for sampling fume and gases – Part 1: Determination of fume emission rate during arc welding and collection of fume for analysis, European Standard, Brussles, (2009).
  • [10] AWS F1.2:1999 – Laboratory method for measuring fume generation rates and total fume emissions of welding and allied processes, American National Standard, Miami, (1999).
  • [11] Carpenter, K.R., Monaghan, B.J. ve Norrish, J., Analysis of fume formation rate and fume particle composition for gas metal arc welding (GMAW) of plain carbon steel using different shielding gas compositions, ISIJ International, vol.49, no.3, 416-420, (2009).
  • [12] Ioffe, I., MacLean, D., Perelman, N., Stares, I. ve Thornton, M., Fume formation rate at globular to spray mode transition during welding, Journal of Physics D: Applied Physics, 28, 2473-2477, (1995).
  • [13] Eryürek, B.İ., Gazaltı kaynağı, Askaynak Yayını. İstanbul, (2004).
  • [14] Bosworth, M.R. ve Deam, R.T., Influence of GMAW droplet size on fume formation rate, Journal of Physics D: Applied Physics, 33, 2605-2610, (2000).