Lif takviyeli pirinç kabuğu külü ikameli beyaz çimentolu harçların bazı mekanik özelliklerinin incelenmesi

Bu çalışmada Beyaz Çimento (PC CEM I 52.5 R) ile pirinç kabuğu külünün ikamesi (ağırlıkça %5, %15 ve %25 oranında) araştırılmıştır. Bu şekilde CO2 salınımı azaltılması ve maliyetin düşürülmesi amaçlanırken mekanik özellikler de araştırılmıştır. Ayrıca en yüksek dayanıma sahip %15 oranında pirinç kabuğu külü ikameli çimento harçlarında polivinil alkol (PVA) ve bazalt (B) lifleri hacimce %0.5, %1 ve %1.5 oranında kullanılmıştır. Bu şekilde üretilen 10 serinin 7 ve 28 günlük basınç ve eğilme dayanımı sonuçları incelenmiştir. Ayrıca yüksek sıcaklık etkisini görmek için 200, 400 ve 600 °C sıcaklıklar uygulanmıştır. Yüksek sıcaklık sonrası basınç ve eğilme dayanımı ve ağırlık kayıpları bulunurken oluşan görsel durum incelenmiştir. Ayrıca yüksek sıcaklık öncesi ve sonrası Mikro Bilgisayarlı Tomografi (Micro-CT) analizleri yapılmıştır. 7 ve 28 günlük sonuçlar incelendiğinde %15 oranında pirinç kabuğu külü ikamesine kadar dayanım artışı görülmüştür. Puzolanik özellik gösteren pirinç kabuğu külü bu oranda kullanılmasıyla çimentolu sistemlerde oluşturduğu fiziko-kimyasal etkisi sebebi ile dayanım özellikleri üzerinde artış oluşturmaktadır. Yüksek SiO2+Al2O3 oranına (%81.27) sahip puzolan içeren çimento harcında uzun dönemli dayanım da artış göstermektedir. Kısa dönemde ise doğal puzolanın özgül yüzey alanı (incelik) dayanım açısında birinci derecede etkili olmaktadır. Daha yüksek oranda kullanılmasıyla ise işlenebilirliğin düşmesi mekanik özellikleri azaltmıştır. Liflerin kullanılmasıyla eğilme dayanımında sürekli artış olmuştur. Basınç dayanımı sonuçları ise %1 oranına kadar artış gösterirken daha yüksek oranda kümelenme nedeniyle azalış olmuştur. Yüksek sıcaklıklardan sonra tahribatlar nedeniyle dayanım değerlerinde düşüş oluşmuş fakat kayıplara rağmen çimento harçları stabilitesini korumuştur.

Investigation of some mechanical properties of fiber-reinforced rice husk ash substituted white cement mortars

In this study, the substitution of rice husk ash (5%, 15% and 25% by weight) with White Cement (PC CEM I 52.5 R) was investigated. In this way, it is aimed to reduce CO2 emission and decrease the cost, while the mechanical properties have also been investigated. In addition, polyvinyl alcohol (PVA) and basalt (B) fibers were used at the rate of 0.5%, 1% and 1.5% by volume in the cement mortar with 15% rice husk ash substitution, which has the highest strength. The 7 and 28 days compressive and flexural strength results of 10 series produced in this way were examined. In addition, temperatures of 200, 400 and 600 °C were applied to see the high temperature effect. While determining the compressive and flexural strengths and weight loss after high temperature, the resulting visual situation was examined. In addition, Micro-Computed Tomography (Micro-CT) analyzes were performed before and after high temperature. When the results of 7 and 28 days were examined, an increase in strength was observed up to 15% rice husk ash substitution. The use of pozzolanic rice husk ash at this rate increases the strength properties due to the physico-chemical effect it creates in cement systems. Long-term strength also increases in cement mortar containing pozzolan with high SiO2+Al2O3 ratio (81.27%). In the short term, the specific surface area (fineness) of the natural pozzolan is primarily effective in terms of strength. With a higher rate of use, the decrease in workability decreased the mechanical properties. There has been a continuous increase in flexural strength with the use of fibers. While the compressive strength results increased by up to 1%, there was a decrease due to higher rate of clustering. After high temperatures, there was a decrease in the strength values due to destructions, but the cement mortar stability was preserved despite the losses.

___

  • Ozturk, A.U., Kaplan, G., A study of some durability properties of mortars with white cement and Portland cement, Revısta Romana de Materiale-Romanian Journal of Materials, 47(3), 315-321, (2017).
  • Jennings, H.M., Bullard, J.W., From electrons to infrastructure: Engineering concrete from the bottom up, Cement and Concrete Research, 41(7), 727-735, (2011).
  • Bullard, J.W., Jennings, H.M., Livingston, R.A., Nonat, A., Scherer, G.W., Schweitzer, J.S., Scrivener, K.L., Thomas, J.J., Mechanisms of cement hydration, Cement and Concrete Research, 41(12), 1208-1223, (2011).
  • Horsley, C., Emmert, M.H., Sakulich, A., Influence of alternative fuels on trace element content of ordinary portland cement, Fuel, 184, 481-489, (2016).
  • Hamad, B.S., Investigations of chemical and physical properties of white cement concrete, Advanced Cement Based Materials, 2(4), 161-167, (1995).
  • Fawzy, Y.A.G., Hay, A.S.A., Utilization of white cement in concrete mix containing srpc, Third International Conference, Advances in Civil, Structural and Mechanical Engineering, 71 – 75, Birmingham, (2015).
  • Malhotra, V.M., Introduction: sustainable development and concrete technology, Concrete International, 24(7), (2002).
  • Naik, T.R., Sustainability of concrete construction, Practice Periodical on Structural Design and Construction, 13(2), 98-103, (2008).
  • Zerbino, R., Giaccio, G., Batic, O.R., Isaia, G.C., Alkali–silica reaction in mortars and concretes incorporating natural rice husk ash, Construction and Building Materials, 36, 796-806, (2012).
  • Antiohos, S.K., Papadakis, V.G., Tsimas, S., Rice husk ash (RHA) effectiveness in cement and concrete as a function of reactive silica and fineness, Cement and Concrete Research, 61, 20-27, (2014).
  • Kannan, V., Ganesan, K., Chloride and chemical resistance of self compacting concrete containing rice husk ash and Metakaolin, Construction and Building Materials, 51, 225-234, (2014).
  • Gastaldini, A.L.G., Da Silva, M.P., Zamberlan, F.B., Neto, C.M., Total shrinkage, chloride penetration, and compressive strength of concretes that contain clear-colored rice husk ash, Construction and Building Materials, 54, 369-377, (2014).
  • Zain, M.F.M., Islam, M.N., Mahmud, F., Jamil, M., Production of rice husk ash for use in concrete as a supplementary cementitious material, Construction and Building Materials, 25(2), 798-805, (2011).
  • Chatveera, B., Lertwattanaruk, P., Durability of conventional concretes containing black rice husk ash, Journal of Environmental Management, 92(1), 59-66, (2011).
  • Chao-Lung, H., Le Anh-Tuan, B., Chun-Tsun, C., Effect of rice husk ash on the strength and durability characteristics of concrete, Construction and Building Materials, 25(9), 3768-3772, (2011).
  • Rößler, C., Bui, D.D., Ludwig, H.M., Rice husk ash as both pozzolanic admixture and internal curing agent in ultra-high performance concrete, Cement and Concrete Composites, 53, 270-278, (2014).
  • Venkatanarayanan, H.K., Rangaraju, P.R., Effect of grinding of low-carbon rice husk ash on the microstructure and performance properties of blended cement concrete, Cement and Concrete Composites, 55, 348-363, (2015).
  • Praveenkumar, T.R., Vijayalakshmi, M.M., Meddah, M.S., Strengths and durability performances of blended cement concrete with TiO2 nanoparticles and rice husk ash, Construction and Building Materials, 217, 343-351, (2019).
  • Jalal, A., Shafiq, N., Nikbakht, E., Kumar, R., Zahid, M., Mechanical properties of hybrid basalt-polyvinyl alcohol (PVA) fiber reinforced concrete, Key Engineering Materials, 744, 3-7, (2017).
  • Choi, J.I., & Lee, B.Y., Bonding properties of basalt fiber and strength reduction according to fiber orientation, Materials, 8(10), 6719-6727, (2015).
  • Fan, F.L., Xu, J.Y., Bai, E.L., He, Q., Experimental study on impact-mechanics properties of basalt fibre reinforced concrete, Advanced Materials Research, 168, 1910-1914, (2011).
  • Jiang, C., Fan, K., Wu, F., Chen, D., Experimental study on the mechanical properties and microstructure of chopped basalt fibre reinforced concrete, Materials & Design, 58, 187-193, (2014).
  • Ayub, T., Shafiq, N., Nuruddin, M.F., Effect of chopped basalt fibers on the mechanical properties and microstructure of high performance fiber reinforced concrete, Advances in Materials Science and Engineering, (2014).
  • Hu, W., Yang, X.G., Zhou, J.W., Xing, H.G., Xiang, J., Experimental research on the mechanical properties of PVA fiber reinforced concrete, Research Journal of Applied Sciences, Engineering and Technology, 5(18), 4563–4567, (2013).
  • Noushini, A., Samali, B., Vessalas, K., Flexural toughness and ductility characteristics of polyvinyl-alcohol fibre reinforced concrete (PVA-FRC), Proceedings of the 8th International Conference on Fracture Mechanics of Concrete and Concrete Structures, 1110–1121, Toledo, (2013).
  • Annam, R., Study of Mechanical Properties of PVA Fiber-Reinforced Concrete With Raman Spectroscopic Analysis, Yüksek Lisans Tezi, Western Kentucky Üniversitesi, Kimya Bölümü Fakültesi, Kentucky, (2015).
  • Olgun, Z., Pirinç kabuğu külünden magnezyum silikat üretimi ve üretilen magnezyum silikatların kızartma yağlarının rejenerasyonunda kullanılması, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, (2008).
  • ASTM C109, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars, ASTM International, West Conshohocken, PA, USA, (2016).
  • ASTM C348-14, Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars, ASTM International, West Conshohocken, PA, USA, (2014).
  • Ferraro, R.M., Nanni, A., Effect of off-white rice husk ash on strength, porosity, conductivity and corrosion resistance of white concrete, Construction and Building Materials, 31, 220-225, (2012).
  • Tulashie, S.K., Kotoka, F., Mensah, D., Kwablah, A.K., Investigation of the compressive strength of pit sand, and sea sand mortar prisms produced with rice husk ash as additive, Construction and Building Materials, 151, 383-387, (2017).
  • Sharma, R.K., Effect of substitution of cement with rice husk ash on compressive strength of concrete using plastic fibres and super plasticizer. KSCE Journal of Civil Engineering, 18(7), 2138-2142, (2014).
  • Habeeb, G.A., Mahmud, H.B., Study on properties of rice husk ash and its use as cement replacement material, Materials Research, 13(2), 185-190, (2010).
  • Habib, A., Begum, R., Alam, M.M., Mechanical properties of synthetic fibers reinforced mortars, International Journal of Scientific & Engineering Research, 4(4), 923-927, (2013).
  • Sim, J., Park, C., Characteristics of basalt fiber as a strengthening material for concrete structures, Composites Part B: Engineering, 36(6-7), 504-512, (2005).
  • Celik, A., Yilmaz, K., Canpolat, O., Al-Mashhadani, M.M., Aygörmez, Y., Uysal, M., High-temperature behavior and mechanical characteristics of boron waste additive metakaolin based geopolymer composites reinforced with synthetic fibers, Construction and Building Materials, 187, 1190-1203, (2018).
  • Arslan, A.A., Uysal, M., Yılmaz, A., Al-mashhadani, M.M., Canpolat, O., Şahin, F., Aygörmez, Y., Influence of wetting-drying curing system on the performance of fiber reinforced metakaolin-based geopolymer composites, Construction and Building Materials, 225, 909-926, (2019).
  • Chindaprasirt, P., Chareerat, T., Sirivivatnanon, V., Workability and strength of coarse high calcium fly ash geopolymer, Cement and Concrete Composites, 29(3), 224-229, (2007).
  • Spadea, S., Farina, I., Carrafiello, A., Fraternali, F., Recycled nylon fibers as cement mortar reinforcement, Construction and Building Materials, 80, 200-209, (2015).
  • Al-mashhadani, M.M., Canpolat, O., Aygörmez, Y., Uysal, M., Erdem, S., Mechanical and microstructural characterization of fiber reinforced fly ash based geopolymer composites, Construction and Building Materials, 167, 505-513, (2018).
  • Kani, E.N., Allahverdi, A., Effects of curing time and temperature on strength development of inorganic polymeric binder based on natural pozzolan, Journal of Materials Science, 44(12), 3088-3097, (2009).
  • Vijai, K., Kumutha, R., Vishnuram, B.G., Effect of types of curing on strength of geopolymer concrete, International Journal of Physical Sciences, 5(9), 1419-1423, (2010).
  • Shinde, B.H., Kadam, K.N., , Properties of fly ash based geopolymer mortar with ambient curing, 2nd National Conference of Innovations in Civil Engineering, 203-206, (2016).
  • Shaikh, F.U.A., Review of mechanical properties of short fibre reinforced geopolymer composites, Construction and Building Materials, 43, 37-49, (2013).
  • Xu, F., Deng, X., Peng, C., Zhu, J., Chen, J., Mix design and flexural toughness of PVA fiber reinforced fly ash-geopolymer composites, Construction and Building Materials, 150, 179-189, (2017).
  • Khan, M.Z.N., Hao, Y., Hao, H., Shaikh, F.U.A., Mechanical properties of ambient cured high strength hybrid steel and synthetic fibers reinforced geopolymer composites, Cement and Concrete Composites, 85, 133-152, (2018).
  • Mechtcherine, V., de Andrade Silva, F., Müller, S., Jun, P., Toledo Filho, R.D., Coupled strain rate and temperature effects on the tensile behavior of strain-hardening cement-based composites (SHCC) with PVA fibers, Cement and Concrete Research, 42(11), 1417-1427, (2012).
  • Wang, R., Meyer, C., Performance of cement mortar made with recycled high impact polystyrene, Cement and Concrete Composites, 34(9), 975-981, (2012).
  • Heah, C.Y., Kamarudin, H., Al Bakri, A.M., Binhussain, M., Luqman, M., Nizar, I.K., Ruzaidi, C.M., Liew, Y.M., Effect of curing profile on kaolin-based geopolymers, Physics Procedia, 22, 305-311, (2011).
  • Puertas, F., Martı́nez-Ramı́rez, S., Alonso, S., Vazquez, T., Alkali-activated fly ash/slag cements: strength behaviour and hydration products, Cement and Concrete Research, 30(10), 1625-1632, (2000).
  • Aygörmez, Y., Canpolat, O., Al-mashhadani, M.M., Uysal, M., Elevated temperature, freezing-thawing and wetting-drying effects on polypropylene fiber reinforced metakaolin based geopolymer composites, Construction and Building Materials, 235, 117502, (2020).
Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1301-7985
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1999
  • Yayıncı: Balıkesir Üniversitesi