Işın tabanlı modellerle en uygun radyo istasyon yeri kestirimi

Servis kalitesi yüksek, güvenilir karasal yayıncılık sistemleri kurmak için baz istasyon yerinin doğru seçilmesi çok önemlidir. Bu işlem için her bir muhtemel baz istasyon yeri üzerinden kapsama alanları çıkarılmakta ve bu haritalar karşılaştırılmaktadır. Binalar ve tepeler baz istasyonundan çıkan ışınların kullanıcıya ulaşmasını engeller. Bu durumlarda elektrik alan Eğim kırınımı (EK) ve Uniform Kırınım teorisi (UKT) modelleriyle bulunabilir. Bu çalışmada EK ve UKT modelleri kullanılarak rasgele yüksekliklere sahip (10x10) 100 engel için en uygun radyo istasyonu yeri tespit edilmiş ve sonuçlar karşılaştırılmıştır.

Prediction of optimum radio station place with ray tracing based models

Deploying of a base station to correct place is vital to install high quality of service (QoS) and reliable terrestrial broadcasting systems. In order to make this process firstly coverage maps are generated for all possible base station places and then these coverage maps are compared among. Buildings and hills block the rays emanating from the base station to user. In these situations, electric field can be calculated by slope diffraction (S-UTD) and Uniform Theory of diffraction (UTD) models. In this study, optimum radio station place has been determined with S-UTD and UTD models and the results are compared for randomly distributed (10x10) 100 obstacles.

___

  • Aydın AE, Tabakcıoğlu MB., Determination of optimum base station location by using UTD model, 26th Signal Processing and Communications Applications Conference (SIU), 1-4, İzmir, (2018).
  • Kouyoumjian RG and Pathak PH., Uniform geometrical theory of diffraction for an edge in a perfectly conducting surface, Proceedings of IEEE, 62 (11), 1448–1461, (1974).
  • Borovikov VA, Kinber BE. Geometrical Theory of Diffraction. Institution of Electrical Engineers, London, UK, (1994).
  • Tabakcioglu MB, Kara A., On the improvements in the multiple edge transition zone diffraction, IEEE 2nd European Conference on Antennas and Propagation, 1-5, Edinburgh, (2007).
  • Tabakcioglu MB., S-UTD-CH model in multiple diffractions, International Journal of Electronics, 103 (5), 765-774, (2016).
  • Andersen JB., UTD multiple-edge transition zone diffraction, IEEE Trans. Antennas and Prop. 45, 1093–1097, (1997).
  • Rizk K, Valenzuela R, Chizhik, D, Gardiol F., Application of the slope diffraction method for urban microwave propagation prediction, IEEE Vehicular Tech. Conf. 2, 1150–1155, (1998).
  • https://altairhyperworks.com/ResourceLibrary.aspx?category=Technical%20Papers&altair_products=Feko (26.10.2019)
  • http://www.wavecall.com/accura.html (26.10.2019)
  • https://www.forsk.com/propagation-modelling (26.10.2019)
  • Tzaras C, Saunders SR, An improved heuristic UTD solution for multiple-edge transition zone diffraction, IEEE Transactions on Antennas Propagation, 49 (12), (2001).
  • Luebbers RJ., A General, Uniform Double Wedge Diffraction Coefficient, IEEE Transactions on Antennas and Propagation, 39 (1), 8–14, (1989).