Çelik lifsiz ve lifli ultra yüksek performanslı betonda çimento yerine farklı oranlarda cam tozu ve/veya yüksek fırın cürufunun ikamesi

Bu çalışmada, çelik lifsiz ve lifli Ultra Yüksek Performanslı Beton (UYPB) karışımlarında çimento yerine farklı oranlarda Cam Tozu (CT) ve/veya Yüksek Fırın Cürufu (YFC) ikamelerinin beton basınç dayanımı üzerindeki etkileri parametrik olarak araştırılmıştır. Bunun için, toplam bağlayıcı miktarının 1000 kg/m3 olduğu beton karışımı için katkısız kontrol karışımı ile çimento yerine ağırlıkça %12.5 ve %25 oranlarında CT ve/veya YFC’nun ikame edildiği tekli ve ikili bağlayıcı sistemine sahip 16 grup UYPB numunesi üretilmiştir. Bununla birlikte, hacimsel olarak %1.0 oranında düz çelik liflerin eklendiği aynı sayıda test numunesi daha hazırlanmıştır. 7, 14, 28, 56 ve 90 günlük basınç testleri sonucunda CT ve YFC’nun bağımsız ve birlikte kullanımlarına ilişkin basınç dayanımları kontrol numunesi referans alınarak değerlendirilmiştir. Elde edilen sonuçlar, UYPB’da ağırlıkça %25’e kadar CT veya YFC ikamesi ile hedeflenen basınç dayanımlarına ulaşılabileceğini göstermiştir. CT ve YFC’nun ikili kullanımlarıyla basınç dayanımlarının olumsuz etkilendiği ve katkı oranı arttıkça dayanımların hızla azaldığı belirlenmiştir. Beton karışımında daha yüksek oranda katkı kullanılmasıyla çelik liflerin basınç dayanımı üzerindeki etkisi daha önem kazanmıştır.

Substitution of different amounts of glass powder and/or ground granulated blast furnace slag in place of cement on ultra-high performance concrete with and without steel fiber

In the presented study, the effects of Glass Powder (GP) and/or Ground Granulated Blast Furnace Slag (GGBFS) substitutions in different proportions in place of cement in Ultra High Performance Concrete (UHPC) mixtures with and without steel fiber were parametrically investigated by the compressive strength. In this context, the total of 16 group UHPC specimens consisting of single and dual-uses of GP and GGBFS of 12.5% and 25% by weight in place of the cement as well as additive-free control mixture were produced for the concrete mixture where the total amount of binder is 1000kg/m3. However, same number of the test specimens were also prepared by inclusion of straight steel fibers of 1.0 vol%. Based on uniaxial compression tests conducted at the concrete ages of 7, 14, 28, 56 and 90 days, the results with regard to independent and combined uses of GP and GGBFS were discussed by referencing the control mixture. The parametric investigations indicated that the target compressive strengths of UHPC can be obtained with the partial substitution of GP or GGBFS up to 25% by weight. Not only the compressive strengths were negatively affected by the dual-uses of GP and GGBFS, but also high amount of additive materials led to rapidly strength losses. The effect of steel fibers on the compressive strength became more important with the additive use in higher proportions.

___

  • [1] Hassan, A.M.T., Jones S.W. ve Mahmud, G.H., Experimental test methods to determine the uniaxial tensile and compressive behaviour of ultra high performance fibre reinforced concrete (UHPFRC), Construction and Building Materials, 37, 874-882, (2012).
  • [2] Rossi, P., Influence of fibre geometry and matrix maturity on the mechanical performance of ultra high-performance cement-based composites, Cement and Concrete Composites, 37, 246-248, (2013).
  • [3] Yu, R., Spiesz, P. ve Brouwers, H.J.H., Development of an eco-friendly ultrahigh performance concrete (UHPC) with efficient cement and mineral admixtures uses, Cement and Concrete Composites, 55, 383-394, (2015).
  • [4] Turker, K., Hasgul, U., Birol, T., Yavas, A. ve Yazici, H., Hybrid fiber use on flexural behavior of ultra high performance fiber reinforced concrete beams, Composite Structures, 229, 111400, (2019).
  • [5] Yavas, A., Hasgul, U., Turker, K. ve Birol, T., Effective fiber type investigation on the shear behavior of ultrahigh-performance fiber-reinforced concrete beams, Advances in Structural Engineering, 22, 7, 1591–1605, (2019).
  • [6] Hasgul, U., Yavas, A., Birol, T. ve Turker, K., Steel fiber use as shear reinforcement on I-shaped UHP-FRC beams, Applied Sciences, 9, 5526, (2019).
  • [7] Wille, K., Naaman, A.E. ve Parra-Montesinos, G.J., Ultra-high performance concrete with compressive strength exceeding 150 MPa (22 ksi): A simpler way, ACI Materials Journal, 108, 1, 46-54, (2011).
  • [8] Moreillon, L. ve Menetrey, P., Rehabilitation and strengthening of existing RC structures with UHPFRC: Various application, Proceedings, RILEM-fibAFGC Int. Symposium on Ultra-High Performance Fibre-Reinforced Concrete, 127-136, Marseille, France, (2013).
  • [9] Hasgul, U., Turker, K., Birol, T. ve Yavas, A., Flexural behavior of ultra-highperformance fiber reinforced concrete beams with low and high reinforcement ratios, Structural Concrete, 19, 1577–1590, (2018).
  • [10] Turker, K., Birol, T., Yavas, A., Hasgul, U. ve Yazici, H., Flexural behavior of beams with ultra high performance fiber reinforced concrete, Technical Journal, 30, 8777–8801, (2019).
  • [11] Park, J-S., Kim, Y.J., Cho, J-R. ve Jeon, S-J., Early-Age strength of ultra high performance concrete in various curing conditions, Materials, 8, 5537-5553, (2015).
  • [12] Taşdemir, M.A. ve Bayramov, F., Yüksek performanslı çimento esaslı kompozitlerin mekanik davranışı, itüdergisi/d, mühendislik serisi, 1, 2, 125- 144, (2002).
  • [13] AFGC/SETRA, Ultra high performance fibre-reinforced concretes, Association Française de Génie Civil / Service d’études techniques des routes et autoroutes, France, (2013).
  • [14] Yavas, A., Birol, T., Türker, K., Hasgül, U. ve Yazıcı, H., Improvement on flexural performance of UHPFRC with hybrid steel fiber, Technical Journal, 31, 6, 10379-10397, (2020).
  • [15] Betterman, L.R., Ouyang, C. ve Shah, S.P., Fiber-matrix interaction in microfiber-reinforced mortar, Advanced Cement Based Materials, 2, 2, 53-61, (1995).
  • [16] Rossi, P., Ultra high performance fibre reinforced concretes (UHPFRC): An overview, Proceedings, Fifth RILEM Symposium on fibre reinforced concretes (FRC), 87-100, Lyon, France, (2000).
  • [17] Kocatürk, A.N., Haberveren, S., Aslan, E.G. ve Taşdemir, M.A., Özel prefabrike elemanların ultra yüksek performanslı betonlarla üretimi, Proceedings, 6. Ulusal Beton Kongresi, 447-458, İstanbul, Türkiye, (2005).
  • [18] Graybeal, B.A., Flexural behavior of an ultrahigh-performance concrete I-girder, Journal of Bridge Engineering, 13, 6, 602-10, (2008).
  • [19] JSCE, Recommendations for design and construction of ultra-high strength fiber reinforced concrete structures (Draft), JSCE Guidelines for Concrete No. 9, Japan Society of Civil Engineers, Tokyo, Japan, (2006).
  • [20] Habel, K. ve Gauvreau, P., Response of ultra-high performance fiber reinforced concrete (UHPFRC) to impact and static loading, Cement Concrete Composites, 30, 10, 938–946, (2008).
  • [21] Yoo, D.Y., Lee, J.H. ve Yoon, Y.S., Effect of fiber content on mechanical and fracture properties of ultra high performance fiber reinforced cementitious composites, Composite Structures, 106, 742–753, (2013).
  • [22] Fehling, E., Schmidt, M., Walraven, J., Leutbecher, T. ve Frönlich, S., Ultrahigh performance concrete, UHPC: Fundamentals, design, examples, BetonKalender, Wilhelm Ernst & Sohn, Berlin, Germany, (2014).
  • [23] Hussein, L. ve Amleh, L., Size effect of ultra‐high performance fiber reinforced concrete composite beams in shear, Structural Concrete, 19, 1, 141–151, (2018).
  • [24] ACI PRC-239-18, Ultra-high-performance concrete: An emerging technology report, American Concrete Institute, Farmington Hills, MI, USA, (2018).
  • [25] Song, H-W. ve Saraswathy, V., Studies on corrosion resistance of reinforced steel in concrete with ground granulated blast-furnace slag - An overview, Journal of Hazardous Materials, 138, 2, 226-233, (2006).
  • [26] Yazıcı, H., Yiğiter, H., Karabulut, A.Ş. ve Baradan, B., Utilization of fly ash and ground granulated blast furnace slag as an alternative silica source in reactive powder concrete, Fuel, 87, 12, 2401-2407, (2008).
  • [27] Yazıcı, H., Yardımcı, M.Y., Aydın, S. ve Karabulut, A.Ş., Mechanical properties of reactive powder concrete containing mineral admixtures under different curing regimes, Construction and Building Materials, 23, 3, 1223-1231, (2009).
  • [28] Vaitkevicius, V., Serelis, E. ve Hilbig, H., The effect of glass powder on the microstructure of ultra high performance concrete, Construction and Building Materials, 68, 102-109, (2014).
  • [29] Soliman, N.A. ve Tagnit-Hamou, A., Development of ultra high performance concrete using glass powder-towards ecofriendly concrete, Construction and Building Materials, 125, 600-612, (2016).
  • [30] Soliman, N.A. ve Tagnit-Hamou, A., Partial substitution of silica fume with fine glass powder in UHPC: Filling the micro gap, Construction and Building Materials, 139, 374-383, (2017).
  • [31] Yalçınkaya, Ç. ve Yazıcı, H., Effects of ambient temperature and relative humidity on early-age shrinkage of UHPC with high-volume mineral admixtures, Construction and Building Materials, 144, 252-259, (2017).
  • [32] Shaikh, F.U.A., Nishiwaki, T. ve Kwon, S., Effect of fly ash on tensile properties of ultra high performance fiber reinforced cementitious composites (UHP-FRCC), Journal of Sustainable Cement-Based Materials, 7, 3, 1-15, (2018).
  • [33] Du, H. ve Tan, K.H., Properties of high volume glass powder concrete, Cement and Concrete Composites, 75, 22-29, (2017).
  • [34] Ceylan, S., Yazıcıoğlu, S. ve Turanlı, L., Usage of micronized zeolite in high performanced concrete, Journal of the Faculty of Engineering and Architecture of Gazi University, 36, 1, 163-176, (2021).
  • [35] Yazıcı, H., Yardımcı, M.Y., Yiğiter, H., Aydın, S. ve Türkel, S., Mechanical properties of reactive powder concrete containing high volumes of ground granulated blast furnace slag, Cement and Concrete Composites, 32, 8, 639- 648, (2010).
  • [36] Yazıcı, H., The effect of curing conditions on compressive strength of ultra high strength concrete with high volume mineral admixtures, Building and Environment, 42, 5, 2083-2089, (2007).
  • [37] Wu, Z., Shi, C., He, W. ve Wu, L., Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete, Construction and Building Materials, 103, 8-14, (2016).
  • [38] Birol, T., Hasgul, U., Terzi, M., Yavaş, A., Turker, K. ve Yazıcı, H., Effect of different steel fiber type and content in flexural behavior of ultra high performance fiber reinforced concrete, Proceedings, 3rd International Balkans Conference on Challenges of Civil Engineering, 262-272, Tirana, Albania, (2016).
  • [39] Arel, H.Ş., Effects of curing type, silica fume fineness, and fiber length on the mechanical properties and impact resistance of UHPFRC, Results in Physics, 6, 664-674, (2016).
  • [40] Smarzewski, P., Effect of curing period on properties of steel and polypropylene fibre reinforced ultra-high performance concrete, IOP Conference Series: Materials Science and Engineering, 245, 3, 032059, (2017).
  • [41] Bıçakçıoğlu, N., Cam tozu ve yüksek fırın cürufu kullanımlarının ultra yüksek performanslı beton karışımlarının basınç dayanımına etkisi, Yüksek Lisans Tezi, Balıkesir Üniversitesi, Fen Bilimleri Enstitüsü, Balıkesir, (2020).
  • [42] BS EN 12390-3:2009, Testing hardened concrete – Part 3: Compressive strength of test specimens, British Standards Institution, Milton Keynes, UK, (2009).
  • [43] Yoo, D.Y. ve Yoon, Y.S., Structural performance of ultra-high- performance concrete beams with different steel fibers, Engineering Structures, 102, 409- 423, (2015).
  • [44] Kou, S.C. ve Xing, F., The effect of recycled glass powder and reject fly ash on the mechanical properties of fibre-reinforced ultrahigh performance concrete, Advances in Materials Science and Engineering, 263243, 1-8, (2012).
Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1301-7985
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1999
  • Yayıncı: Balıkesir Üniversitesi