Bazı nar ürünlerinin antioksidan özellikler ve in-vitro biyoerişilebilirlik açısından değerlendirilmesi

Bu çalışmada, nar ekşisi, nar ekşili sos ve nar reçelleri hidroksimetilfurfural, toplam fenolik madde, antioksidan kapasite ve biyoerişilebilirliği de kapsayacak şekilde bazı fizikokimyasal özellikler yönünden değerlendirilmiştir. Ürünlerin askorbik asit içeriği 0.89-19.78 mg 100g-1 arasında değişirken, toplam fenolik madde miktarları 31.40-2061.10 mg gallik asit eşdeğeri 100g-1arasında saptanmıştır. Ürünlerin antioksidan kapasiteleri DPPH yöntemi ile 34.01-2377.52 mg troloks eşdeğeri 100g-1; CUPRAC metodu ile 18.9-6439.0 mg troloks eşdeğeri 100g-1 arasında belirlenmiştir. Simüle edilmiş gastrointestinal sindirim sonrası fenolik madde ve antioksidan kapasiteye ilişkin biyoerişilebilirlik değerleri sırasıyla %74-247 ve %53-213 arasında değişim göstermiştir. Renk sonuçları ve duyusal özelliklere yansıyan yüksek HMF seviyeleri, üretim ve depolama koşullarının iyileştirilmesi gerektiğini ortaya koymuştur. Diğer taraftan, nar ekşilerinin yüksek askorbik asit, toplam fenolik madde içeriği ile antioksidan kapasitesi; nar reçellerinin ise antioksidanlar açısından yüksek biyoerişilebilirliğe sahip olması, bu ürünlerin günlük diyette tüketiminin önemini göstermiştir. Sonuç olarak, bu çalışma üreticiler, beslenme uzmanları ve diğer otoriteler tarafından üretim koşulları, tüketici sağlığı ve beslenme ile ilgili değerlendirmelerde kullanılabilecek bir durum tespit çalışması olarak değerlendirilebilir.

Assessment of antioxidant properties and in-vitro bioaccessibility of some pomegranate products

In this research, pomegranate molasses, pomegranate sour sauces and pomegranate jams were evaluated in terms of some physicochemical properties including hydroxymethylfurfural, total phenolic content, antioxidant capacity and bioaccessibility. While ascorbic acid of these products ranged between 0.89-19.78 mg 100g-1, total phenolic contents changed between 31.40-2061.10 mg gallic acid equivalent 100g-1. Antioxidant capacities of the products were determined as 34.01-2377.52 mg trolox equivalent 100g-1 with DPPH assay and 18.9-6439.0 mg trolox equivalent 100g-1 with CUPRAC assay. The bioaccessibilities regarding phenolic substance and antioxidant capacity after simulated gastrointestinal digestion ranged between 74-247% and 53-213%, respectively. High HMF levels, which were reflected on color and sensory features, have indicated the necessity of improving the production and storage conditions. On the other hand, the highest ascorbic acid, total phenolic content and antioxidant capacity of pomegranate molasses and the bioaccessibility of pomegranate jams in terms of antioxidants showed the importance of consumption of these products in the daily diet. So, this study can be regarded as a case surveillance study that can be used by producers, nutritionals and authorities to make assessments on manufacturing conditions, consumer health and nutrition.

___

  • [1] Onur, C., Akdeniz Bölgesi narlarının seleksiyonu, Ph.D Thesis, Çukurova Üniversitesi Ziraat Fakültesi Bahçe Bitkileri Bölümü, Adana, (1982).
  • [2] Aviram, M., Dornfeld, L., Kaplan, M., Coleman, R., Gaitini, D. and Nitecki, S., Pomegranate juice flavonoids inhibit low-density lipoprotein oxidation and cardiovascular diseases: Studies in atherosclerotic mice and in humans, Drugs Under Experimental and Clinica Research, 28, 49-62, (2002).
  • [3] Fischer, A. U., Carle, R. and Kammerer, R. D., Identification and quantification of phenolic compounds from pomegranate (Punica granatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD–ESI/MSn, Food Chemistry, 127, 807-821, (2011).
  • [4] Kim, D. B., Shin, G. H., Lee, Y. J., Lee, J. S., Cho, J. H., Baik, S. O. and Lee, O. H., Assessment and comparison of the antioxidant activities and nitrite scavenging activity of commonly consumed beverages in Korea, Food Chemistry, 151, 58- 64, (2014).
  • [5] Seeram, P. N., Aviram, M., Zhang, J., Henning, M. S., Feng, L., Dreher, M. and Heber, D., Comparison of antioxidant potency of commonly consumed polyphenol-rich beverages in the United States, Journal of Agricultural and Food Chemistry, 56, 4, 1415-1422, (2008).
  • [6] Holland, D., Hatib, K. and Bar-Yákov, I., Pomegranate: botany, horticulture, breeding, Horticultural Reviews, 35, 127-191, (2009).
  • [7] Cemeroğlu, B., Nar Suyu Üretim Teknolojisi Üzerinde Araştırmalar, Ankara Üniversitesi Ziraat Fakültesi Yayını, No: 664, Ankara Üniversitesi Basımevi, Ankara, 71 p, (1977).
  • [8] Chalfoun-Mounayar, A., Nemr, R., Yared, P. Khairallah, S. and Chahine, R., Antioxidant and Weight Loss Effects of Pomegranate Molasses, Journal of Applied Pharmaceutical Science, 02, 06, 45-50, (2012).
  • [9] Metin, Z. E., Ankara piyasasında satışa sunulan nar ekşisi, nar ekşisi sosu ve üzüm pekmezlerinin hidroksimetilfurfural düzeyinin saptanması, MSc thesis, Hacettepe Üniversitesi, Sağlık Bilimleri Enstitüsü, Beslenme ve Diyetetik, Ankara, (2014).
  • [10] El Darra, N., Rajha, H. N., Saleh, F., Al-Oweini, R., Maroun, R. G. and Louka, N., Food fraud detection in commercial pomegranate molasses syrups by UV-VIS spectroscopy, ATR-FTIR spectroscopy and HPLC methods, Food Control, 78, 132-137, (2017).
  • [11] Costa, A. M. M., Silva, L. O. and Torres, A. G., Chemical composition of commercial cold-pressed pomegranate (Punica granatum) seed oil from Turkey and Israel, and the use of bioactive compounds for samples' origin preliminary discrimination, Journal of Food Composition and Analysis, 75, 8-16, (2019).
  • [12] Zhai, X. C., Zhu, C. P., Zhang, Y., Sun, J. R., Alim, A. and Yang, X. B., Chemical characteristics, antioxidant capacities and hepatoprotection of polysaccharides from pomegranate peel, Carbohydrate Polymers, 202, 461-469, (2018).
  • [13] Melgarejo, P., In-Sanchez, A. C., Vazquez-Araujo, L., Hernandez, F., Jose Martinez, J., Legua, P. and Carbonell-Barrachina, A. A., Anthocyanin content and colour development of pomegranate jam, Food and Bioproducts Processing, 89, C4, 477-481, (2011).
  • [14] Abid, M., Yaich, H., Hidouri, H., Attia, H., Ayadi, M. A., Effect of substituted gelling agents from pomegranate peel on colour, textural and sensory properties of pomegranate jam, Food Chemistry, 239, 1047-1054, (2018).
  • [15] Mosele, J. I., Macià, A., Romero, M., Motilva, M. and Rubió, L., Application of in vitro gastrointestinal digestion and colonic fermentation models to pomegranate products (juice, pulp and peel extract) to study the stability and catabolism of phenolic compounds, Journal of Functional Foods, 14, 529-540, (2015).
  • [16] Cemeroğlu, B. S., Gıda Analizleri (Gıda Teknolojisi Derneği Yayınları, No. 34), 535 p, Ankara, Bizim Büro Basımevi, (2007).
  • [17] AOAC, AOAC Official Method 932.12 Solids (soluble) in fruits and fruit products refractometer method, file:///C:/Users/ASUS/Downloads/kupdf.net_37115-aoac-official-method93212-solids-soluble-in-fruits-and-fruit-products.pdf, (1980).
  • [18] AOAC, AOAC Official Method 942.15 Acidity (Titratable) of fruit products read with AOAC official method 920.149 preparation of test sample, file:///C:/Users/ASUS/Downloads/dlscrib.com-pdf-942-15 dl_99ac2d7d3adcf66d29ecbec953f1639b.pdf, (2000).
  • [19] Bakker, J., Pridle, P. and Timberlake, C. F., Tristimulus measurements (CIELAB 76) of portwine colour, Vitis, 25, 67 -78, (1986).
  • [20] Simona, B., Alexandrina, F., Mirela, Ţ. D. and Ildikó, S., Studies on citrus species fruits ascorbic acid content using kinetic, spectrophotometric and iodometric methods, Analele Universităţii din Oradea, Fascicula:Protecţia Mediului, XVI, 212-217, (2011).
  • [21] Zappalà, M., Fallico, B., Arena, E. and Verzera, A., Methods for the determination of HMF in honey: a comparison, Food Control, 16, 273-277, (2005).
  • [22] Türkmen, N., Sarı, F. and Velioğlu, Y. S., Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin-Ciocalteu methods, Food Chemistry, 99, 835-841, (2006).
  • [23] Benzie, I. F. F. and Strain, J. J., The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”, Analytical Biochemistry, 239, 1, 70-76, (1996).
  • [24] Katalinic, V., Milos, M., Kulisic, T. and Jukic, M., Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols, Food Chemistry, 94, 550-557 (2006).
  • [25] Yen, G. C. and Duh, P. D., Scavenging effect of methanolic extracts of peanut hulls on free-radical and active oxygen species, Journal of Agricultural and Food Chemistry, 42, 629-632, (1994).
  • [26] Apak, R., Güçlü, K., Özyürek, M. and Çelik, S. E., Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay, Microchimica Acta, 160, 413-419, (2008).
  • [27] Vitali, D., Vedrina Dragojević, I. and Šebečić, B., Effects of incorporation of integral raw materials and dietary fibre on the selected nutritional and functional properties of biscuits, Food Chemistry, 114, 1462-1469, (2009)
  • [28] Altuğ, T. and Elmacı, Y., Gıdalarda Duyusal Değerlendirme, 134 p, 2. Baskı, Sidas Medya, ISBN:978-9944-5660-8-7, İzmir, (2011).
  • [29] TS 12720, Nar ekşisi standardı, Türk Standartları, Ankara, (2001).
  • [30] Karabıyıklı, S. and Kışla, D., Inhibitory effect of sour pomegranate sauces on some green vegetables and kisir, International Journal of Food Microbiology, 155, 211-216, (2012).
  • [31] Akpinar-Bayizit, A., Özcan, T., Yilmaz-Ersan, L. and Yıldız, E., Evaluation of antioxidant activity of pomegranate molasses by 2,2-Diphenyl-l-Picrylhydrazyl (DPPH) method, International Journal of Chemical Engineering and Applications, 7, 1, 71-74, (2016).
  • [32] Üstün, N. Ş. and Tosun, İ., Çeşitli reçellerin bileşimi üzerine bir araştırma, Gıda, 23, 2, 125-131, (1998).
  • [33] Broomfield, R. W., The Manufacture of Preserves, Flavourings and Dried Fruits, Blackie Academic & Professional Pub, New York, ABD, 165-195, (1996).
  • [34] Eyigün, F. Ş., Hicaz nar çeşidine ait narlardan elde edilen nar ekşilerinin özelliklerinin belirlenmesi üzerine bir araştırma, MSc thesis, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Gıda Mühendisliği Anabilim Dalı, Adana, 112 p, (2012).
  • [35] Kamal, Y. T., Alam, P., Alqasoumi, S. I., Foudah, A. I., Alqarni, M. H. and Yusufoğlu, H. S., Investigation of antioxidant compounds in commercial pomegranate molasses products using matrix-solid phase dispersion extraction coupled with HPLC, Saudi Pharmaceutical Journal, 26, 6, 839-844, (2018).
  • [36] İncedayi, B., Tamer, C. E. and Çopur, Ö. U., A Research on the composition of pomegranate molasses, Journal of Agricultural Faculty of Uludag University, 24, 2, 37-47, (2010).
  • [37] Yildiz, O., Sahin, H., Kara, M., Aliyazicioğlu, R., Tarhan, Ö. and Kolayli, S., Maillard reaksiyonları ve reaksiyon ürünlerinin gıdalardaki önemi, Akademik Gıda, 8, 44-51, (2010).
  • [38] Sabancı, S., Cevik, M., Cokgezme, O. F., Yildiz, H. and İcier, F., Quality characteristics of pomegranate juice concentrates produced by ohmic heating assisted vacuum evaporation, Journal of the Science of Food and Agriculture, 99, 2589-2595, (2019).
  • [39] Karaca, E., Nar suyu konsantresi üretiminde uygulanan bazı işlemlerin fenolik bileşenler üzerine etkisi, MSc thesis, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana, 144 p, (2011).
  • [40] Fischer, U. A., Carle, R. and Kammerer, D. R., Thermal stability of anthocyanins and colourless phenolics in pomegranate (Punica granatum L.) juices and model solutions, Food Chemistry, 138, 1800-809, (2013).
  • [41] Yılmaz, Y., Çelik, I. and Isık, F., Mineral composition and total phenolic content of pomegranate molasses, Journal of Food, Agriculture and Environment, 5, 3&4, 102-104, (2007).
  • [42] Kaya, A. and Sözer, N., Rheological behaviour of sour pomegranate juice concentrates, International Journal of Food Science & Technology, 40, 223- 227 (2005).
  • [43] Garrido, J. I., Lozano, J. E. and Genovese, D. B., Effect of formulation variables on rheology, texture, colour, and acceptability of apple jelly: Modelling and optimization, LWT-Food Science and Technology, 62, 325-332, (2015).
  • [44] Kopjar, M., Pilizota, V., Tiban, N. N., Subaric, D., Babic, J., Ackar, D. and Sajdl, M., Strawberry Jams: Influence of Different Pectins on Colour and Textural Properties, Czech Journal of Food Sciences, 27, 1, 20-28, (2009).
  • [45] Vignoli, J. A., Viegas, M. C., Bassoli, D. G. and de Toledo Benassi, M., Roasting process affects differently the bioactive compounds and the antioxidant activity of arabica and robusta coffees, Food Research International, 61, 279-85, (2014).
  • [46] Öztan, T., Mor havuç, konsantresi, şalgam suyu, nar suyu ve nar ekşisi ürünlerinde antioksidan aktivite tayini ve fenolik madde profilinin belirlenmesi, MSc thesis, İTÜ Fen Bilimleri Enstitüsü, Gıda Mühendisliği Anabilim Dalı, İstanbul, (2006).
  • [47] Koçak, E., The determination of the antioxidant capacities and the in-vitro bioavailabilities of Osmanlı strawberry, Osmanlı strawberry jam and strawberry tree (Arbutus unedo), MSc thesis, İTÜ Fen Bilimleri Enstitüsü, Gıda Mühendisliği Anabilim Dalı, İstanbul, (2014).
  • [48] Poiana, M., Munteanu, M., Bordean, D., Gligor, R. and Alexa, E., Assessing the effects of different pectins addition on colour quality and antioxidant properties of blackberry jam, Chemistry Central Journal, 7, 1-13, (2013).
  • [49] Mena, P., García-Viguera, C., Navarro-Rico, J., Moreno, D. A., Bartola, J., Saura, D. and Martí, N., Phytochemical characterisation for industrial use of pomegranate (Punica granatum L.) cultivars grown in Spain, Journal of the Science of Food and Agriculture, 91, 1893-1906, (2011).
  • [50] Manach, C., Polyphenols: food sources and bioavailability, American Journal of Clinical Nutrition, 79, 727-747, (2004).
  • [51] Palafox-Carlos, H., Ayala-Zavala, J. F. and González-Aguilar, G. A. The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidants, Journal of Food Science, 76, 6-15, (2011).
  • [52] Costa, P., Grevenstuk, T., Rosa da Costa, A. M., Gonçalves, S. and Romano, A. Antioxidant and anti-cholinesterase activities of Lavandula viridis L’Hér extracts after in vitro gastrointestinal digestion, Industrial Crops and Products, 55, 83- 89, (2014).
  • [53] Wootton-Beard, P. C., Moran, A. and Ryan, L., Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin-Ciocalteu methods, Food Research International, 44, 1, 217-224 (2011).
  • [54] Sandström, B., Micronutrient interactions: effects on absorption and bioavailability, British Journal of Nutrition, 85, Suppl 2, 181-185, (2001).
  • [55] Parada, J. and Aguilera, J. M., Food microstructure affects the bioavailability of several nutrients, Journal of Food Science, 72, 21-32, (2007).
  • [56] Sensoy, I., A review on the relationship between food structure, processing, and bioavailability, Critical Reviews in Food Science and Nutrition, 54, 902-909, (2014).
  • [57] Kamiloğlu, S., Paslı, A. A, Özçelik, B., Van Camp, J. and Çapanoğlu, E., Influence of different processing and storage conditions on in vitro bioaccessibility of polyphenols in black carrot jams and marmalades, Food Chemistry, 186, 74-82 (2015).
  • [58] Değirmencioğlu, N., Gürbüz, O. and Şahan, Y., The monitoring, via an in vitro digestion system, of the bioactive content of vegetable juice fermented with Saccharomyces cerevisiae and Saccharomyces boulardii, Journal of Food Processing and Preservation, 40, 798-811, (2016).
  • [59] Fang, F., Li, J. M., Zhang, P., Tang, K., Wang, W., Pan, Q. H. ang Huang, W. D., Effects of grape variety, harvest date, fermentation vessel and wine ageing on flavonoid concentration in red wines, Food Research International, 41, 1, 53- 60, (2008)