Aza-18-crown-6 modifiye karbon nanotüplerin sentezi, karakterizasyonu ve adsorpsiyon kapasitesinin belirlenmesi

Karbon nanotüpler (CNT) olağanüstü eşsiz özellikleri sebebiyle keşfinden günümüze birçok uygulama alanı bulmuştur. Yüzeylerinde gerçekleştirilen kovalent modifikasyonlarla kimyasal ve fiziksel özellikleri geliştirilebilmektedir. Bu çalışma ile 1-aza-18-crown-6 modifiye karbon nanotüpler Steglich esterleşmesi ile sentezlenmiştir. Sentezlenen bileşik FTIR, 1H-NMR, 13C-NMR, TGA ve TEM yöntemleriyle karakterize edilmiştir. Elde edilen bileşiğin ve modifiye edilmemiş CNT bileşiğinin Fe3+, Mn2+, Co2+, Cr3+, Cu2+, Zn2+ metal iyonlarını adsobsiyonu incelenmiştir. Adsorpsiyon yüzdesi (% A.Y.), adsorpsiyon kapasitesi (qe), maksimum adsorpsiyon kapasitesi (qmax), adsorpsiyon denge sabiti (Kd), Serbest Gibbs Enerjisi (ΔGo) ve izoterm türü belirlenmiştir. Adsorpsiyon çalışmalarına göre, monoaza-18-crown-6 modifiye edilmiş çok duvarlı karbon nanotüp (MWCNT-CO-(MA-18-Crown-6)) bileşiği, tüm metal iyonlarını ham çok duvarlı karbon nanotüpten (MWCNT) çok daha iyi yüzdelerde adsorbe ettiği gözlenmiştir. MWCNT-CO-(MA-18-Crown-6) bileşiği, çözelti içindeki Fe3+ iyonlarının yaklaşık olarak tamamını (% 96.15) adsorbe etmiştir. Bu sonuçlar ışığında elde edilen MWCNT-CO-(MA-18-Crown-6) bileşiği metal iyonlarının sulu ortamlardan adsorpsiyonunda başarılı bir şekilde uygulanabileceği söylenebilir.

Synthesis and characterization determination aza-18-crown-6 modified carbon nanotubes and determination of adsorption capacity

Carbon nanotubes (CNT) have found many applications since their discovery due to their extraordinary unique properties. Its chemical and physical properties can be improved by covalent modifications on its surfaces. In this study, 1-aza-18-crown-6 modified carbon nanotubes were synthesized by Steglich esterification. The synthesized compound was characterized by FTIR, 1H-NMR, 13C-NMR, TGA and TEM methods. The adsorption of Fe3+, Mn2+, Co2+, Cr3+, Cu2+, Zn2+ metal ions of the obtained compound and unmodified CNT compound was investigated. Adsorption percentage (A.Y.%), adsorption capacity (qe), maximum adsorption capacity (qmax), adsorption equilibrium constant (Kd), Free Gibbs Energy (ΔGo) and isotherm type were determined. According to adsorption studies, for the monoaza-18-crown-6 modified multi-walled carbon nanotube (MWCNT-CO-(MA-18-Crown-6)) compound has adsorbed all metal ions much better percentages than crude multi-walled carbon nanotube (MWCNT). MWCNT-CO-(MA-18-Crown-6) compound has adsorbed approximately all of the Fe3+ ions in solution (96.15%). In the light of these results, it can be said that the MWCNT-CO-(MA-18-Crown-6) compound can be successfully applied in the adsorption of metal ions from aqueous environments.

___

  • Hong, C. Y., You, Y. Z. ve Pan, C. Y., Synthesis of water-soluble multiwalled carbon nanotubes with grafted temperature-responsive shells by surface RAFT polymerization, Chemistry of Materials, 17, 9, 2247–2254, (2005).
  • Hadavifar, M., Bahramifar, N., Younesi, H. ve Li, Q., Adsorption of mercury ions from synthetic and real wastewater aqueous solution by functionalized multi-walled carbon nanotube with both amino and thiolated groups, Chemical Engineering Journal, 237, 217–228, (2014).
  • Mormann, W., Lu, Y., Zou, X. ve Berger, R., Modification and grafting of multi-walled carbon nanotubes with bisphenol-A- polycarbonate, Macromolecular Chemistry and Physics, 209, 2113–2121, (2008).
  • Li, Z., et al., Chemically-modified activated carbon with ethylenediamine for selective solid-phase extraction and preconcentration of metal ions, Analytica Chimica Acta, 632, 2, 272–277, (2009).
  • Wang, Y., Iqbal, Z. ve Malhotra, S. V., Functionalization of carbon nanotubes with amines and enzymes, Chemical Physics Letters, 402, 96–101, (2005).
  • Jiang, G., Wang, L., Chen, C., Dong, X., Chen, T. ve Yu, H., Study on attachment of highly branched molecules onto multiwalled carbon nanotubes, Materials Letters, 59, 2085–2089, (2005).
  • Wu, T. ve Yuan, Y. J., Alkynylation of carbon nanotube by a peptide bond, Materials Letters, 133, 64–66, (2014).
  • Profumo, A., et al., Multiwalled carbon nanotube chemically modified gold electrode for inorganic as speciation and Bi(III) determination, Analytical Chemistry, 78, 12, 4194–4199, (2006).
  • Lim, J. K., et al., Selective thiolation of single-walled carbon nanotubes, Synthetic Metals, 139, 2, 521–527, (2003).
  • Lin, Y., Zhou, B., Fernando, K. A. S., Liu, P., Allard, L. F. ve Sun, Y. P., Polymeric carbon nanocomposites from carbon nanotubes functionalized with matrix polymer, Macromolecules, 36, 19, 7199–7204, (2003).
  • Karousis, N., Tagmatarchis, N. ve Tasis, D., Current progress on the chemical modification of carbon nanotubes, Chemical Reviews, 110, 9, 5366–5397, (2010).
  • Kim, S. W., et al., Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers, Carbon N. Y., 501, 3–33, (2012).
  • Xing, L. ve Imae, T., Size-controlled in situ synthesis of metal nanoparticles on dendrimer-modified carbon nanotubes, The Journal of Physical Chemistry C, 111, 6, 2416–2420, (2007).
  • Zeynalov, E., et al., The peculiar behavior of functionalized carbon nanotubes in hydrocarbons and polymeric oxidation environments, Journal of Adhesion Science and Technology, 31, 9, 988–1006, (2017).
  • Çalışır, Ü., Çiçek, B., Synthesis of thiol-glycol-functionalized carbon nanotubes and characterization with FTIR, TEM, TGA, and NMR technics, Chemical Papers, 74, 10, 3293-3302, (2020).
  • Çalışır, Ü., Çiçek, B., Doğan, M., Microwave-assisted cross-coupling synthesis of aryl functionalized MWCNTs and investigation of hydrogen storage properties, Chemical Papers, 1-8, (2021).
  • Xue, W. and Li, P., dielectrophoretic deposition and alignment of carbon nanotubes in Yellampalli, D. S., Carbon nanotubes - synthesis, characterization, applications, Intech, 171–190, London, (2011).
  • Li, R., et al., Multiwalled carbon nanotubes modified with 2-aminobenzothiazole modified for uniquely selective solid-phase extraction and determination of Pb(II) ion in water samples, Microchimica Acta, 172, 3–4, 269–276, (2011). Zang, Z., Hu, Z., Li, Z., He, Q. and Chang, X., Synthesis, characterization and application of ethylenediamine-modified multiwalled carbon nanotubes for selective solid-phase extraction and preconcentration of metal ions, Journal of Hazardous Materials, 172, 2–3, 958–963, (2009).
  • Santhosh, P., Manesh, K. M., Gopalan, A. ve Lee, K. P., Novel amperometric carbon monoxide sensor based on multi-wall carbon nanotubes grafted with polydiphenylamine-Fabrication and performance, Sensors & Actuators, B: Chemical, 125, 1, 92–99, (2007).
  • Kumar, S., Upadhyay, S. N. ve Upadhya, Y. D., Removal of copper by adsorption on fly ash, Journal of Chemical Technology & Biotechnology, 37, 4, 281–290, (1987).
  • Dai, B., et al., Schiff base-chitosan grafted multiwal led carbon nanotubes as a novel solid-phase extraction adsorbent for determination of heavy metal by ICP-MS, Journal of Hazardous Materials, 219–220, 103–110, (2012).
  • Erk, Ç., Cakir, U., Cicek, B., Estimation of Li+, K+ and Ca2+ complexation with 12 crown-4, 15 crown-5 and 18 crown-6 using a Na+ISE in dioxane-water, part IV - Cation equilibrium constants of macrocyclic ethers with ion selective electrodes, Mikrochimica Acta, 132, 79–82, (1999).
  • Çalışır, Ü., Çiçek, B., Taç eterlerin metal iyonları ile kompleksleşmesinin kondüktometriye Job’s Plot yönteminin uygulanması ile belirlenmesi, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21, 2, 840-854, (2019).
  • Çiçek, B., Çakir, Ü., Azizoglu, A., The associations of macrocyclic ethers with cations in 1,4-dioxane/ water mixtures; Potentiometric Na+ and K+ binding measurements and computational study, Journal of Inclusion Phenomena and Macrocyclic Chemistry, 72,121–125, (2012).
  • Calisir, U., Çiçek, B., Comparison of classic and microwave-assisted synthesis of benzo-thio crown ethers, and investigation of their ion pair extractions, Journal of Molecular Structure, 1148, 505–511, (2017).
  • Çiçek, B., Çakır, Ü., Erk, Ç., The determination of crown–cation complexation behavior in dioxane/water mixtures by conductometric studies, Polymers for Advanced Technologies, 836, 831–836, (1998).
  • Çiçek, B. ve Çalışır, Ü., Bazı karbazol schiff bazlarının katyon bağlama özelliklerinin kondüktometrik incelenmesi, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 19, 2, 246–256, (2017).
  • Czikkely, M., Neubauer, E., Fekete, I., Ymeri, P. ve Fogarassy, C., Review of heavy metal adsorption processes by several organic matters from wastewaters, Water (Switzerland), 10, 10, 1–15, (2018).
  • Ali, J., et al., Efficient, stable and selective adsorption of heavy metals by thio-functionalized layered double hydroxide in diverse types of water, International Journal of Chemical Engineering, 332, September 2017, 387–397, (2018).
  • Sun, D. T., et al., Rapid, selective heavy metal removal from water by a metal-organic framework/polydopamine composite, ACS Central Science, 4, 3, 349–356, (2018).
  • Tizaoui, K., Benguella, B., ve Makhoukhi, B., “Selective adsorption of heavy metals (Co2+ , Ni2+ , and Cr3+ ) from aqueous solutions onto natural marne clay, Desalination and Water Treatment, 142, 252–259, (2019).
  • Kayacan, S., Kömür ve koklarla sulu çözeltilerden boyar maddelerin uzaklaştırılması, Yüksek Lisans Tezi, Ankara Üniversitesi, Ankara, (2007).
  • Balcı, A., Astrazon kırmızısı ve astrazon mavisinin ticari aktif karbon üzerine adsorpsiyonu ve adsorpsiyon prosesinin optimizasyonu, Yüksek Lisans Tezi, Kilis 7 Aralık Üniversitesi, Kilis, (2018).
  • Orbak, İ., Aktif karbon ile çevre kirletici bazı unsurların giderilmesi, Doktora Tezi, İstanbul Teknik Üniversitesi , İstanbul, (2009).
  • Swenson, H. ve Stadie, N. P., Langmuir’s theory of adsorption: A centennial review, Langmuir, 35, 16, 5409–5426, (2019).
  • Langmuir, I., The constitution and fundamental properties of solids and liquids. Part I. Solids., Journal of the American Chemical Society, 38, 11, 2221–2295, (1916).
  • Tümsek, F. ve Karabacakoğlu, B., Nikel ( II ) iyonlarının sulu çözeltiden granül aktif karbon üzerine adsorpsiyonu, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 14, 2, 1–6, (2012).
  • Alkan, M. ve Dogan, M., Adsorption of copper (II) onto perlite, Journal of Colloid and Interface Science, 243, pp. 280–291, (2001).
  • Wang, J., Ma, X., Fang, G., Pan, M., Ye, X. ve Wang, S., Preparation of iminodiacetic acid functionalized multi-walled carbon nanotubes and its application as sorbent for separation and preconcentration of heavy metal ions, Journal of Hazardous Materials, 186, 2–3, 1985–1992, (2011).
  • Duran, A., Tuzen, M. ve Soylak, M., Preconcentration of some trace elements via using multiwalled carbon nanotubes as solid phase extraction adsorbent, Journal of Hazardous Materials, 169, 1–3, 466–471, (2009).
  • Li, L., Huang, Y., Wang, Y. ve Wang, W., Hemimicelle capped functionalized carbon nanotubes-based nanosized solid-phase extraction of arsenic from environmental water samples, Analytica Chimica Acta, 631, 2, 182–188, (2015).
  • Tuzen, M., Saygi, K. O. ve Soylak, M., Solid phase extraction of heavy metal ions in environmental samples on multiwalled carbon nanotubes, Journal of Hazardous Materials, 152, 2, 632–639, (2008).
  • Vellaichamy, S. ve Palanivelu, K., Preconcentration and separation of copper , nickel and zinc in aqueous samples by flame atomic absorption spectrometry after column solid-phase extraction onto MWCNTs impregnated with D2EHPA-TOPO mixture, Journal of Hazardous Materials, 185, 2–3, 1131–1139, (2011).
  • Zhao, X., Song, N. ve Jia, Q., Determination of Cu, Zn, Mn, and Pb by microcolumn packed with multiwalled carbon nanotubes on-line coupled with flame atomic absorption spectrometry, Microchimica Acta, 166, 329–335, (2009).
  • Çalışır, Ü., Organo-modifiye karbon nanotüplerin sentezi, karakterizasyonu ve bazı uygulama alanları, Doktora Tezi, Balıkesir Üniversitesi , Balıkesir, (2020).
  • Çakir, Ü., Çiçek, B., Yildiz, Y.K., Alkan, M., Solvent effect upon ıon-pair extraction of different sodium dyes using some crown ethers, Journal of Inclusion Phenomena and Macrocyclic Chemistry, 34, 153–165, (1999).
  • Çakir, Ü., Çiçek, B., Extraction-ability and -selectivity of tetra-aza-crown ethers for transition metal cations, Transition Metal Chemistry, 29, 263–268, (2004).
  • Çiçek, B., Yıldız, A., Synthesis, Metal ion complexation and computational studies of thio oxocrown ethers, Molecules, 16, 8670–8683, (2011).
  • Çiçek, B., Onbaşıoğlu, Z., Synthesis and characterization of 1,3,4-thiadiazole-2,5-dithio crown ethers, Heterocyclic Communication, 22, 329–332, (2016).
  • Çiçek, B., Çalışır, Ü., The investigation of complexation properties and hard-soft acid-base relationship between thiacrown ethers and metal ions, Letters in Organic Chemistry, 13, 572–577, (2016).