Birleşik Tanklı Su Sayacı Test Sisteminde Geribeslemeli Doğrusallaştırma Tabanlı Santrifüj Pompa Akış Hızı Kontrolü

Daimi mıknatıslı doğru akım (PMDC) motorlu santrifüj pompası, geri besleme doğrusallaştırmalı birleştirilmiş tanklı su sayacı test sisteminde su besleme ünitesi olarak kullanılmak üzere tasarlanmıştır. Pompa tarafından üretilen akış hızı, bu tek girişli tek çıkışlı (SISO) sisteme giriş-çıkış geri besleme doğrusallaştırmasını uygulamak için gerekli giriş değişkenine karşılık gelmektedir. Pompa motoru, darbe genişlik modülasyonu (PWM) stratejisini çeşitli frekanslarda ve pwm yöntemlerinde uygulayan Arm Cortex M7 tabanlı bir mikro denetleyici tarafından yönetilmektedir. İstenilen görev döngüsü değerlerinde kararlı bir akış hızı sağlamak için en uygun pwm frekansı ve sürüş yönteminin belirlenmesi amaçlanmaktadır. Pompa motorunu sürmek için hem hızlı hem de yavaş düşme modlarında bir H-Bridge sürücü entegre devresi (L298N) kullanılmıştır. Debi ölçümleri, her mod için 100 Hz ile 20 kHz arasındaki 4 frekans değerinde gerçekleştirilmiştir. Düşük pwm frekansında (100 Hz) hızlı düşme modu, kararlı durumdaki su akış hızında daha fazla sapmalara neden olmaktadır. Yavaş düşme modunda ise, motor akımının daha yavaş azalmasına rağmen motor dönüş hızında frenleme etkisi ile daha hızlı bir azalma sağlamakta, bu da pompanın akış hızı stabilitesini iyileştirmekte ve arzu edilen pwm görev döngüsü değerlerinde sapmaları istenildiği şekilde en aza indirmektedir. Buna karşın, pwm anahtarlama frekansı arttırıldıkça, enerji kayıpları da arttığı için sürücünün kontrol edilebildiği gerilim aralığı azalmaktadır. Sonuç olarak 1 kHz Pwm frekansı, yavaş düşmeli sürüş moduyla birleştirildiğinde, doğrusal regresyon başarısı ve geniş kontrol edilebilme aralığı açısından en iyi performans elde edilmiştir.

Feedback Linearization Based Flow Rate Control for Centrifugal Pump in Coupled-Tank Water Meter Testing System

A permanent magnet direct current (PMDC) motor centrifugal pump is intended to be used as the water supply unit in a feedback linearization based coupled-tank water meter testing system. Flow rate generated by the pump corresponds to the input variable for implementing the input-output feedback linearization to this single-input-single-output (SISO) system. The pump motor is driven by an Arm Cortex M7 based microcontroller applying the pulse-width modulation (PWM) strategy at various frequencies and pwm methods. It is aimed to determine a suitable PWM frequency and driving method in order to provide a stable flow rate at the desired duty cycle values. An H-Bridge driver integrated circuit (L298N) is used in both fast decay and slow decay modes for driving the pump motor. Flow rate measurements are carried out at 4 range of frequencies between 100 Hz and 20 kHz for each mode. Fast decay mode in low pwm frequency (100Hz) results in higher deviations at the steady-state flow rate. However, slow decay mode provides a faster reduction in motor speed despite the slower current decay, which improves the flow rate stability and minimize deviations at constant pwm duty cycle values. High pwm switching frequencies increase the energy losses resulting in a lower driving voltage range, which reduces the effective range of selection for pwm duty cycle setting of flow rate adjustment. 1 kHz PWM frequency combined with the slow-decay driving mode achieves good performance in terms of linear regression and wider range for pwm duty cycle to flow rate transformation.

___

  • A Aly, A. (2007). Flow rate control of variable displacement piston pump with pressure compensation using neural network. JES. Journal of Engineering Sciences, 35(6), 1401-1412.
  • Drgona, P., & Stefun, R. (2018, October). Application of Stepper Motors in CNC Device. In 2018 International Conference and Exposition on Electrical And Power Engineering (EPE) (pp. 241-246). IEEE.
  • Dutta, P., & Kumar, A. (2017). Intelligent calibration technique using optimized fuzzy logic controller for ultrasonic flow sensor. Mathematical Modelling of Engineering Problems, 4(2), 91-94.
  • El-Saadawi, M. M., Gouda, E. A., Elhosseini, M. A., & Essa, M. S. (2020). Identification and Speed Control of DC Motor Using Fractional Order PID: Microcontroller. European Journal of Electrical Engineering and Computer Science, 4(1).
  • Gevorkov, L., Rassõlkin, A., Kallaste, A., & Vaimann, T. (2018, January). Simulink based model for flow control of a centrifugal pumping system. In 2018 25th International Workshop on Electric Drives: Optimization in Control of Electric Drives (IWED) (pp. 1-4). IEEE.
  • Gogolyuk, U., Lysiak, V., & Grinberg, I. (2004, October). Mathematical modeling of a synchronous motor and centrifugal pump combination in steady state. In IEEE PES Power Systems Conference and Exposition, 2004. (pp. 1444-1448). IEEE.
  • Goppelt, F., Hieninger, T., & Schmidt-Vollus, R. (2018, December). Modeling centrifugal pump systems from a system-theoretical point of view. In 2018 18th International Conference on Mechatronics-Mechatronika (ME) (pp. 1-8). IEEE.
  • Gupta, V. (2010, March). Working and analysis of the H-bridge motor driver circuit designed for wheeled mobile robots. In 2010 2nd International Conference on Advanced Computer Control (Vol. 3, pp. 441-444). IEEE.
  • Hamouda, A., Manck, O., Hafiane, M. L., & Bouguechal, N. E. (2016). An enhanced technique for ultrasonic flow metering featuring very low jitter and offset. Sensors, 16(7), 1008.
  • Janevska, G. (2013, September). Mathematical modeling of pump system. In Electronic International Interdisciplinary Conference (No. September 2013, pp. 455-58).
  • Ivanov, V. A., & Erkaev, N. V. (2021). Numerical and analytical modeling of centrifugal pump.
  • Lee, C. H., Jeon, H. K., & Hong, Y. S. (2017). An implementation of ultrasonic water meter using dToF measurement. Cogent Engineering, 4(1), 1371577.
  • Mori, T., Funato, H., Ogasawara, S., Okazaki, F., & Hirota, Y. (2016). Improved Modified Switching Transient Pulse Width Modulation (MT‐PWM) Method Applied to H‐Bridge Type Step‐Down Converter. Electrical Engineering in Japan, 194(3), 59-69.
  • Naresh, B., Madhu, P., & Prasad, K. R. K. (2011). Analysis of DC solar water pump and generalized photovoltaic model using Matlab/Simulink. UACEE International Journal of Advancements in Electronics and Electrical Engineering, 1(1).
  • Radsanjani, M. F., & Astharini, D. (2018). PC Based Real Time Control of DC Motor. Jurnal Al-Azhar Indonesia Seri Sains dan Teknologi, 4(2), 66-69.
  • Ramos, H. M., McNabola, A., López-Jiménez, P. A., & Pérez-Sánchez, M. (2019). Smart water management towards future water sustainable networks. Water, 12(1), 58.
  • Santhosh, K. V., & Roy, B. K. (2012). An intelligent flow measurement technique using ultrasonic flow meter with optimized neural network. International journal of control and automation, 5(4), 185-195.
  • Shablovskiy, A., & Kutovoy, E. (2019, March). Obtaining the head characteristic of a Low Flow Centrifugal Pump by numerical methods. In IOP Conference Series: Materials Science and Engineering (Vol. 492, No. 1, p. 012035). IOP Publishing.
  • Suñol, F., Ochoa, D. A., & Garcia, J. E. (2018). High-precision time-of-flight determination algorithm for ultrasonic flow measurement. IEEE Transactions on Instrumentation and Measurement, 68(8), 2724-2732.
  • Van Der Geest, M., Polinder, H., & Ferreira, J. A. (2014, September). Influence of PWM switching frequency on the losses in PM machines. In 2014 International Conference on Electrical Machines (ICEM) (pp. 1243-1247). IEEE.
  • Wang, Y., Zhang, H., Han, Z., & Ni, X. (2021). Optimization design of centrifugal pump flow control system based on adaptive control. Processes, 9(9), 1538.
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç