Akıllı Sokak Lambaları için Mikrodenetleyici Tabanlı Kablosuz Haberleşme Sistemi Tasarımı

Sokak aydınlatması şehirlerdeki toplam enerji tüketiminin büyük bir kısmını oluşturmaktadır. Bu çalışma, ışık yayan diyot (LED) sokak aydınlatmasında enerji tüketimini azaltmaya ve arızalı LED sokak lambalarını tespit etmeye odaklanmıştır. Bu amaçla akıllı LED sokak lambaları için mikrodenetleyici tabanlı kablosuz iletişim sistemi tasarlanmıştır. Tasarlanan sistemde LED sokak lambasının ışık şiddeti, hava sıcaklığı ve nemi ile sokak lambasının etrafındaki hareket sayısı gözlemlenmiştir. Geliştirilen modül, gözlenen değerlerin analiz edildiği ve çıkışa göre LED armatürün parlaklığının kontrol edildiği gömülü bir sistemden oluşmuştur. Gömülü sistemde kullanılan mikrodenetleyici, sensörlerin iletişimini ve veri iletimini sağlamak için C programlama dili ile programlanmıştır. Ölçülen değerlerin gözlemlenmesi için bir insan-makine arayüzü geliştirilmiştir. Sensörlerden gelen verileri bilgisayar ortamına aktarmak için uzun menzilli (LoRa) teknolojisi kullanılmıştır. LoRa teknolojisi, bir uç cihaz, ağ geçidi, sunucu (Chirpstack) ve insan-makine arayüzünden oluşur. Gün batımından sonra hareket sensörü devreye girmiştir ve ortam hareketlerinin sayısı tespit edilmiştir. Tespit edilen hareket sayısına göre ortam kalabalık veya tenha olarak tanımlanmıştır. LED sokak lambasının parlaklığı, ortam koşullarına göre gece yarısından sonra otomatik olarak belirlenmiştir. Geliştirilen sistemin enerji tüketimi üzerindeki etkileri analiz edilmiş ve sonuçlar sunulmuştur.

Microcontroller Based Wireless Communication System Design for Smart Streetlights

Street lighting accounts for a large part of the total energy consumption in cities. This study focused on reducing energy consumption in light-emitting diode (LED) street lighting and detecting defective LED streetlights. For this purpose, a microcontroller-based wireless communication system has been designed for smart LED streetlights. In the designed system, the light intensity of the LED streetlight, the air temperature and humidity, and the number of movements around the streetlight were observed. The developed module consists of an embedded system in which the observed values are analyzed, and the brightness of the LED luminaire is controlled according to the output. The microcontroller used in the embedded system is programmed with the C programming language to enable the communication of the sensors and data transmission. A human-machine interface has been developed for observing the measured values. Long-range (LoRa) technology is used to transfer the data received from the sensors to the computer environment. LoRa technology consists of an end device, gateway, server (Chirpstack), and human-machine interface. After sunset, the motion sensor was activated and the number of environmental movements was detected. The environment was described as crowded or secluded according to the number of detected movements. The brightness of the LED streetlight was determined automatically after midnight according to the ambient conditions. The effects of the developed system on energy consumption were analyzed, and the results were presented.

___

  • Abdou, O. A. J. J. o. a. e. (1997). Effects of luminous environment on worker productivity in building spaces. 3(3), 124-132.
  • Davidovic, M., Djokic, L., Cabarkapa, A., Djuretic, A., Skerovic, V., & Kostic, M. J. I. a. (2019). Drivers’ preference for the color of LED street lighting. 7, 72850-72861.
  • De la Obra, I., Esteban García, B., García Sánchez, J., Casas López, J., Sánchez Pérez, J. J. P., & Sciences, P. (2017). Low cost UVA-LED as a radiation source for the photoFenton process: a new approach for micropollutant removal from urban wastewater. 16(1), 72-78.
  • Douglas, C. H., & Douglas, M. R. J. H. e. (2004). Patient‐friendly hospital environments: exploring the patients’ perspective. 7(1), 61-73.
  • Gallaway, T., Olsen, R. N., & Mitchell, D. M. J. E. e. (2010). The economics of global light pollution. 69(3), 658-665.
  • Goodenough, J. B., Abruña, H. D., & Buchanan, M. V. (2007).Basic research needs for electrical energy storage. report of the basic energy sciences workshop on electrical energy storage, april 2-4, 2007. Retrieved from
  • Korkmazer, E., Bektas, Y., Aykanat, M., Jevedzade, S., & Caymaz, G. F. Y. J. J. O. C. U. A. (2019). Study of Light Pollution in Urban Lighting in Nisantasi Example. 3(2), 8-15.
  • Lagorse, J., Paire, D., & Miraoui, A. J. R. E. (2009). Sizing optimization of a stand-alone street lighting system powered by a hybrid system using fuel cell, PV and battery. 34(3), 683-691.
  • Minnaar, C., Boyles, J. G., Minnaar, I. A., Sole, C. L., & McKechnie, A. E. J. J. o. a. e. (2015). Stacking the odds: light pollution may shift the balance in an ancient predator–prey arms race. 52(2), 522-531.
  • Owens, A. C., & Lewis, S. M. J. E. (2018). The impact of artificial light at night on nocturnal insects: a review and synthesis. 8(22), 11337-11358.
  • Peck, J., Ashburner, G., & Schratz, M. (2011). Solid state led lighting technology for hazardous environments; lowering total cost of ownership while improving safety, quality of light and reliability. Paper presented at the Petroleum and Chemical Industry Conference Europe Electrical and Instrumentation Applications.
  • Putri, M., & Aryza, S. J. I. J. I. R. i. C. (2018). Design of security tools using sensor Light Dependent Resistor (LDR) through mobile phone. 4(10), 168-173.
  • Rustemli, S., & Demir, Y. J. L. (2021). Comparative Analysis Of Lighting Installations Used In Road Illumination. 29(6).
  • Sanford, S. J. U. o. W. M., WI, USA. (2004). Energy-Efficient Agricultural Lighting. 14, 1-12.
  • Satterthwaite. (2009). The implications of population growth and urbanization for climate change. 21(2), 545-567.
  • Sharma, P., Jain, S., Bagga, U., Panse, P. J. I. J. f. R. i. A. S., & Technology, E. (2021). Smart Traffic Light and Street Light Management System. 9(1), 392-397.
  • Shiraki, S., Ohashi, Y., Uehara, T., & Shioda, S. J. I. A. (2021). Verification of error-increasing factors by sensor response based localization technology through real device experiments. 9, 101729-101740.
  • Taguchi, T. J. I. T. o. E. (2008). Present status of energy saving technologies and future prospect in white LED lighting. 3(1), 21-26.
  • Widianto, E. D., Pakpahan, M. S., & Septiana, R. (2018). LoRa QoS performance analysis on various spreading factor in Indonesia. Paper presented at the 2018 International Symposium on Electronics and Smart Devices (ISESD).
  • Xie, R.-J., Li, Y. Q., Hirosaki, N., & Yamamoto, H. (2011). Nitride phosphors and solid-state lighting: Taylor & Francis Boca Raton, FL.
  • Yoomak, S., Jettanasen, C., Ngaopitakkul, A., Bunjongjit, S., Leelajindakrairerk, M. J. E., & Buildings. (2018). Comparative study of lighting quality and power quality for LED and HPS luminaires in a roadway lighting system. 159, 542-557.
  • Yuen, M.-C., Chu, S. Y., Chu, W. H., Cheng, H. S., Ng, H. L., & Yuen, S. P. J. I. J. E. T. (2018). A low-cost IoT smart home system. 7, 3143-3147.
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç