Study of temporal variability and mass closure of PM2.5 and its chemical constituents during weak south-west monsoon

Ambient PM2.5 (n = 42) samples have been collected during a weak South-west (SW) monsoon (July‒September, 2015) from central part of the Indo-Gangetic Plain (IGP; at Kanpur). Organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), water-soluble inorganic species (WSIS) and metals have been measured in this study. Air-mass back trajectory (AMBT) analysis reveals atmospheric transport from three major pathways indicated as Type-1 (n = 24; traversing through western region), Type-2 (n = 8; traversing eastern region) and Type-3 (n = 10; terrestrial air-masses). Total carbonaceous aerosols (TCA), mineral dust (MD) and WSIS in Type-1 air-mass contributed 18.7 ± 8%, 40.3 ± 14.5% and 35.2 ± 13.4%, respectively to the PM2.5 mass. TCA, MD and WSIS mass fractions constituted 27.1 ± 13.2%, 29.1 ± 7.9% and 34.9 ± 10.7% in Type-2 air-mass and 25.2 ± 14.1%, 34.6 ± 14% and 33.3 ± 9.8% in Type-3 air-mass, respectively. Mineral dust percentage fraction and composition (based on Fe/Al ratio) suggests significant differences between Type-1 and Type-2 air-masses. Based on statistical two-tailed t-test, the mineral dust composition of Type-1 versus Type3 and Type-2 versus Type-3 air-masses look near similar. However, average mass ratios of OC/EC (6.2–6.4), WSOC/OC (≈0.50; exception being difference in Type-2 versus Type-3) and K+ BB/OC (0.05–0.07; K+ BB: biomass burning derived potassium) look near similar in PM2.5 associated with all the three air-masses; indicating carbonaceous aerosols from well-mixed sources with dominant contribution from biomass burning emission. A significant abundance of organic aerosols and mineral dust in presence of high moisture content and their mixing over IGP has implications to perturbation in regional scale radiative forcing

Kaynakça

Castro, L.M., Pio, C.A., Harrison, R.M., Smith, D.J.T., 1999. Carbonaceous aerosol in urban and rural European atmospheres: estimation of secondary organic carbon concentrations. Atmos. Environ. 33 (17), 2771–2781.

Chakraborty, A., Gupta, T., 2010. Chemical characterization and source apportionment of submicron (PM1) aerosol in Kanpur region. Aerosol Air Qual. Res. 10, 433–445.

Das, R., Khezri, B., Srivastava, B., Datta, S., Sikdar, P.K., Webster, R.D., et al., 2015. Trace element composition of PM2.5 and PM10 from Kolkata – a heavily polluted Indian metropolis. Atmos. Poll Res. 6 (5), 742–750.

Dey, S., Girolamo, L.D., Donkelaar, A., Tripathi, S.N., Gupta, T., Mohan, M., 2012. Variability of outdoor fine particulate (PM2.5) concentration in the Indian Subcontinent: a remote sensing approach. Remote Sens. Environ. 127, 153–161.

Dey, S., Tripathi, S.N., Singh, R.P., Holben, B., 2004. Influence of dust storms on the aerosol optical properties over the Indo-Gangetic Basin. J. Geophys. Res. Atmos. 109, 1984–2012.

Engelbrecht, J.P., Moosmüller, H., Pincock, S., Jayanty, R.K.M., Lersch, T., Casuccio, G., 2016. Technical note: mineralogical, chemical, morphological, and optical interrelationships of mineral dust re-suspensions. Atmos. Chem. Phys. 16 (17), 10809–10830.

Ferek, R.J., Reid, J.S., Hobbs, P.V., Blake, D.R., Liousse, C., 1998. Emission factors of hydrocarbons, halocarbons, trace gases and particles from biomass burning in Brazil. J. Geophys. Res. 103, 32107–32118.

Ghosh, S., Gupta, T., Rastogi, N., Gaur, A., Misra, A., Tripathi, S.N., et al., 2014. Chemical characterization of summertime dust events at Kanpur: insight into the sources and level of mixing with anthropogenic emissions. Aerosol Air Qual. Res. 14, 879–891.

Goswami, B.N., Mohan, R.S.A., 2001. Intraseasonal oscillations and interannual variability of the indian summer monsoon. J. Clim. 14 (6), 1180–1198.

Gupta, T., Mandaria, A., 2013. Sources of submicron aerosol during fog dominated wintertime at Kanpur. Environ. Sci. Pollut. Res. 20 (8), 5615–5629.

Kaul, D.S., Gupta, T., Tripathi, S.N., Tare, V., Collett, J.L., 2011. Secondary organic aerosol: a comparison between foggy and nonfoggy days. Environ. Sci. Technol. 45 (17), 7307–7313.

Krishnamurthy, L., Krishnamurthy, V., 2014. Influence of PDO on South Asian summer monsoon and monsoon-ENSO relation. Clim. Dynam. 42, 2397–2410.

Kumar, A., Gupta, T., 2015. Development and field evaluation of a multiple slit nozzlebased high volume PM2.5 inertial impactor assembly (HVIA). Aerosol Air Qual. Res. 15, 1188–1200.

Kumar, A., Sarin, M.M., 2009. Mineral aerosols from western India: temporal variability of coarse and fine atmospheric dust and elemental characteristics. Atmos. Environ. 43 (26), 4005–4013.

Laskin, A., Gilles, M.K., Knopf, D.A., Wang, B., China, S., 2016. Progress in the analysis of complex atmospheric particles. Annu. Rev. Anal. Chem. 9 (1), 117–143.

Maenhaut, W., Salma, I., Cafmeyer, J., Annegarn, H.J., Andreae, M.O., 1996. Regional atmospheric aerosol composition and sources in the eastern Transvaal, South Africa, and impact of biomass burning. J. Geophys. Res. Atmos. 101 (D19), 23631–23650.

McLennan, S.M., 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. G-cubed 2.

Nair, V.S., Moorthy, K.K., Alappattu, D.P., Kunhikrishnan, P.K., George, S., Nair, P.R., et al., 2007. Wintertime aerosol characteristics over the Indo-Gangetic Plain (IGP): impacts of local boundary layer processes and long-range transport. J. Geophys. Res. 112.

Nie, W., Ding, A., Wang, T., Kerminen, V.-M., George, C., Xue, L., et al., 2014. Polluted Dust Promotes New Particle Formation and Growth 4. pp. 6634.

Pilinis, C., Seinfeld, J.H., Grosjean, D., 1989. Water content of atmospheric aerosols. Atmos. Environ. 23 (7), 1601–1606 (1967).

Pipal, A.S., Jan, R., Satsangi, P.G., Tiwari, S., Taneja, A., 2014. Study of surface morphology, elemental composition and origin of atmospheric aerosols (PM2.5 and PM10) over Agra, India. Aerosol Air Qual. Res. 14, 1685–1700.

Rai, P., Chakraborty, A., Mandariya, A.K., Gupta, T., 2016. Composition and source apportionment of PM1 at urban site Kanpur in India using PMF coupled with CBPF. Atmos. Res. 178–179, 506–520.

Rajeev, P., Rajput, P., Gupta, T., 2016. Chemical characteristics of aerosol and rain water during an El Niño and PDO influenced Indian summer monsoon. Atmos. Environ. 145, 192–200.

Rajput, P., Anjum, M.H., Gupta, T., 2017. One year record of bioaerosols and particles concentration in Indo-Gangetic Plain: implications of biomass burning emissions to high-level of endotoxin exposure. Environ. Pollut. 224, 98–106.

Rajput, P., Gupta, T., 2016. A facile digestion protocol for metal analysis in ambient aerosols: implications to mineral dust characteristics and human health impact. J. Energy Environ. Sustain. 2, 24–29.

Rajput, P., Gupta, T., Kumar, A., 2016a. The diurnal variability of sulfate and nitrate aerosols during wintertime in the Indo-Gangetic Plain: implications for heterogeneous phase chemistry. RSC Adv. 6, 89879–89887.

Rajput, P., Mandaria, A., Kachawa, L., Singh, D.K., Singh, A.K., Gupta, T., 2016b. Chemical characterisation and source apportionment of PM1 during massive loading at an urban location in Indo-Gangetic Plain: impact of local sources and long-range transport. Tellus B 68.

Rajput, P., Sarin, M., Kundu, S.S., 2013. Atmospheric particulate matter (PM2.5), EC, OC, WSOC and PAHs from NE–Himalaya: abundances and chemical characteristics. Atmos. Poll Res. 4 (2), 214–221.

Rajput, P., Sarin, M., Sharma, D., Singh, D., 2014a. Characteristics and emission budget of carbonaceous species from post-harvest agricultural-waste burning in source region of the Indo-Gangetic Plain. Tellus B 66.

Rajput, P., Sarin, M.M., 2014. Polar and non-polar organic aerosols from large-scale agricultural-waste burning emissions in Northern India: implications to organic massto-organic carbon ratio. Chemosphere 103, 74–79.

Rajput, P., Sarin, M.M., Sharma, D., Singh, D., 2014b. Organic aerosols and inorganic species from post-harvest agricultural-waste burning emissions over northern India: impact on mass absorption efficiency of elemental carbon. Env. Sci. Process Impact 16 (10), 2371–2379.

Rajput, P., Singh, D.K., Singh, A.K., Gupta, T., 2018. Chemical composition and sourceapportionment of sub-micron particles during wintertime over Northern India: new insights on influence of fog-processing. Environ. Pollut. 233, 81–91.

Ram, K., Sarin, M.M., Tripathi, S.N., 2010. A 1 year record of carbonaceous aerosols from an urban site in the Indo-Gangetic Plain: characterization, sources, and temporal variability. J. Geophys. Res. Atmos. 115 (D24).

Ramanathan, V., Ramana, M.V., 2005. Persistent, widespread and strongly absorbing haze over the Himalayan foothills and the Indo-gangetic Plain. Pure Appl. Geophys. 162, 1609–1626.

Reddy, M.S., Venkataraman, C., 2002. Inventory of aerosol and sulphur dioxide emissions from India: I- Fossil fuel combustion. Atmos. Environ. 36, 677–697.

Saarikoski, S., Timonen, H., Saarnio, K., Aurela, M., Järvi, L., Keronen, P., et al., 2008. Sources of organic carbon in fine particulate matter in northern European urban air. Atmos. Chem. Phys. 8 (20), 6281–6295.

Seinfeld, J.H., Pandis, S.N., 1999. Atmospheric Chemistry and Physics: from Air Pollution to Climate Change. Wiley.

Singh, D.K., Gupta, T., 2016. Source apportionment and risk assessment of PM1 bound trace metals collected during foggy and non-foggy episodes at a representative site in the Indo-Gangetic plain. Sci. Total Environ. 550, 80–94.

Stein, A.F., Draxler, R.R., Rolph, G.D., Stunder, B.J.B., Cohen, M.D., Ngan, F., 2015. NOAA's HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 96 (12), 2059–2077.

Sudheer, A.K., Rengarajan, R., 2012. Atmospheric mineral dust and trace metals over urban environment in western India during winter. Aerosol Air Qual. Res. 12, 923–933.

Turpin, B.J., Lim, H.J., 2001. Species contributions to PM2.5 mass concentrations: revisting common assumptions for estimating organic mass. Aerosol. Sci. Technol. 35, 602–610.

Usher, C.R., Michel, A.E., Grassian, V.H., 2003. Reactions on mineral dust. Chem. Rev. 103 (12), 4883–4940.

Voutsa, D., Samara, C., Kouimtzis, T., Ochsenkuhn, K., 2002. Elemental composition of airborne particulate matter in the Multi-impacted urban area of Thessaloniki, Greece. Atmos. Environ. 36, 4453–4462.

Wang, B., LinHo, 2002. Rainy season of the Asian–Pacific summer monsoon. J. Clim. 15 (4), 386–398.

Weber, R.J., Sullivan, A.P., Peltier, R.E., Russell, A., Yan, B., Zheng, M., et al., 2007. A study of secondary organic aerosol formation in the anthropogenic-influenced southeastern United States. J. Geophys. Res. Atmos. 112 (D13), D13302.

Zhang, Y., Wallace, J.M., Battisti, D.S., 1997. ENSO-like interdecadal variability: 1900–93. J. Clim. 10 (5), 1004–1020.

Kaynak Göster