Investigation of fungal spore characteristics in PM2.5 through organic tracers in Shanghai, China

In order to investigate the fungal spore tracers in fine particles (PM2.5), including mannitol and arabitol at an urban site in a Chinese megacity, PM2.5 samples were collected in Shanghai from May 22 to June 19, 2015. The analysis results showed that the average concentration of airborne mannitol and arabitol were 5.79 and 3.86 ng m−3 , respectively. Mannitol and arabitol exhibited obvious positive correlations at ambient temperature, resulting from improving fungal spores formation rate and emission strength along with higher temperature. The concentrations of fungal spore tracers with Relative humidity-RH 70%–85% were higher than that RH > 85% and RH < 70%, which reflected that fungal spores released would be restrained under higher humidity. The concentrations between arabitol and mannitol showed negative correlation with wind speed, probably due to the dilution effect of wind. Three ions components (sulfate, nitrate and ammonium) exhibited poor correlations with fungal spore tracer. Based on the results, mannitol had a similar formation pathway with arabitol, resulting in strong correlation between them during our campaign. The number concentration of fungal spores was 10513.16 spores m−3 , while fungal spores contributed about 1.91% for organic carbon OC using conversion factors.

Kaynakça

Bauer, H., Claeys, M., Vermeylen, R., Schueller, E., Weinke, G., Berger, A., Puxbaum, H., 2008a. Arabitol and mannitol as tracers for the quantification of airborne fungal spores. Atmos. Environ. 42, 588–593.

Bauer, H., Kasper-Giebl, A., Löflund, M., Giebl, H., Hitzenberger, R., Zibuschka, F., Puxbaum, H., 2002a. The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols. Atmos. Res. 64, 109–119.

Bauer, H., Kasper-Giebl, A., Zibuschka, F., Hitzenberger, R., Kraus, G.F., Puxbaum, H., 2002b. Determination of the carbon content of airborne fungal spores. Anal. Chem. 74, 91–95.

Bauer, H., Schueller, E., Weinke, G., Berger, A., Hitzenberger, R., Marr, I.L., Puxbaum, H., 2008b. Significant contributions of fungal spores to the organic carbon and to the aerosol mass balance of the urban atmospheric aerosol. Atmos. Environ. 42, 5542–5549.

Buiarelli, F., Canepari, S., Filippo, P.D., Perrino, C., Pomata, D., Riccardi, C., Speziale, R., 2013. Extraction and analysis of fungal spore biomarkers in atmospheric bioaerosol by HPLC–MS–MS and GC–MS. Talanta 105, 142–151.

Burshtein, N., Langyona, N., Rudich, Y., 2011. Ergosterol, arabitol and mannitol as tracers for biogenic aerosols in the eastern Mediterranean. Atmos. Chem. Phys. 11, 829–839.

Carlile, M.J., Watkinson, S.C., Gooday, G.W., 2001. Genetic Variation and Evolution in the Fungi, second ed. Academic Press, London, pp. 245–295.

Cheng, J.Y.W., Chan, C.K., Lee, C.T., Lau, A.P.S., 2009. Carbon content of common airborne fungal species and fungal contribution to aerosol organic carbon in a subtropical city. Atmos. Environ. 43, 2781–2787.

Christner, B.C., Morris, C.E., Foreman, C.M., Cai, R., Sands, D.C., 2008. Ubiquity of biological ice nucleators in snowfall. Science 319 1214-1214.

Chysirichote, T., Reiji, T., Asami, K., Ohtaguchi, K., 2014. Quantification of the glucosamine content in the filamentous fungus Monascus ruber cultured on solid surfaces. J. Basic Microbiol. 54, 350–357.

Claeys, M., Kourtchev, I., Pashynska, V., Vas, G., Vermeylen, R., Wang, W., Cafmeyer, J., Chi, X., Artaxo, P., Andreae, M.O., 2010. Polar organic marker compounds in atmospheric aerosols during the LBA-SMOCC 2002 biomass burning experiment in Rondônia, Brazil: sources and source processes, time series, diel variations and size distributions. Atmos. Chem. Phys. 10, 9319–9331.

Després, V.R., Huffman, J.A., Burrows, S.M., Hoose, C., Safatov, A.S., Buryak, G., Fröhlich-Nowoisky, J., Elbert, W., Andreae, M.O., Pöschl, U., 2012. Primary biological aerosols in the atmosphere: a review of observations and relevance. Tellus 64.

Douwes, J., van der Sluis, B., Doekes, G., van Leusden, F., Wijnands, L., van Strien, R., Verhoeff, A., Brunekreef, B., 1999. Fungal extracellular polysaccharides in house dust as a marker for exposure to fungi: relations with culturable fungi, reported home dampness, and respiratory symptoms. J. Allergy Clin. Immunol. 103, 494–500.

Dumka, U.C., Bhattu, D., Tripathi, S.N., Kaskaoutis, D.G., Madhavan, B.L., 2015. Seasonal inhomogeneity in cloud precursors over Gangetic Himalayan region during GVAX campaign. Atmos. Res. 155, 158–175.

Elbert, W., Taylor, P.E., Andreae, M.O., Pöschl, U., 2007. Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions. Atmos. Chem. Phys. 7, 4569–4588.

Feng, J., Li, M., Zhang, P., Gong, S., Zhong, M., Wu, M., Zheng, M., Chen, C., Wang, H., Lou, S., 2013. Investigation of the sources and seasonal variations of secondary organic aerosols in PM 2.5 in Shanghai with organic tracers. Atmos. Environ. 79, 614–622.

Di Filippo, P., Pomata, D., Riccardi, C., Buiarelli, F., Perrino, C., 2013. Fungal contribution to size-segregated aerosol measured through biomarkers. Atmos. Environ. 64, 132–140.

Flores, M.E., Medina, P.G., Camacho, S.P., De, J.U.B.M., De, l.C.O.M.C., Ramírez, I.O., Hernández, M.E., 2014. Fungal spore concentrations in indoor and outdoor air in university libraries, and their variations in response to changes in meteorological variables. Int. J. Environ. Health Res. 24, 320.

Fröhlichnowoisky, J., Despres, V.R., Pöschl, U., 2009. High diversity of fungi in air particulate matter. In: EGU General Assembly Conference.

Gonçalves, F.L., Bauer, H., Cardoso, M.R., Pukinskas, S., Matos, D., Melhem, M., Puxbaum, H., 2010. Indoor and outdoor atmospheric fungal spores in the São Paulo metropolitan area (Brazil): species and numeric concentrations. Int. J. Biometeorol. 54, 347–355.

Gopalakrishnan, S., Devassikutty, A.K., Mathew, M., Ayyappan, D., Thiagarajan, S., Raghunathan, R., 2016. Passive release of fungal spores from synthetic solid waste surfaces. Aerosol Air Qual. Res. 16, 1441–1451.

Górny, R.L., Reponen, T., Willeke, K., Robine, E., Boissier, M., Sergey, A., 2002. Fungal fragments as indoor air biocontaminants. Appl. Environ. Microbiol. 68, 3522–3532.

Graham, B., Guyon, P., Taylor, P.E., Artaxo, P., Maenhaut, W., Glovsky, M.M., Flagan, R.C., Andreae, M.O., 2003. Organic compounds present in the natural Amazonian aerosol: characterization by gas chromatography-mass spectrometry. J. Geophys. Res. 108 (D24), 4766.

Hameed, A.A.A., Khoder, M.I., Ibrahim, Y.H., Saeed, Y., Osman, M.E., Ghanem, S., 2012. Study on some factors affecting survivability of airborne fungi. Sci. Total Environ. 414, 696–700.

Ho, H.M., Rao, C.Y., Hsu, H.H., Chiu, Y.H., Liu, C.M., Chao, H.J., 2005. Characteristics and determinants of ambient fungal spores in Hualien, Taiwan. Atmos. Environ. 39, 5839–5850.

Ion, A.C., Vermeylen, R., Kourtchev, I., Cafmeyer, J., Chi, X., Gelencsér, A., Maenhaut, W., Claeys, M., 2005. Polar organic compounds in rural PM2.5 aerosols from Kpuszta, Hungary, during a 2003 summer field campaign: sources and diurnal variations. Atmos. Chem. Phys. 5, 1805–1814.

Jaenicke, R., 2005. Abundance of cellular material and proteins in the atmosphere. Science 308 73-73.

Jaenicke, R., Matthias-Maser, S., Gruber, S., 2007. Omnipresence of biological material in the atmosphere. Environ. Chem. 4, 217–220.

Jones, A.M., Harrison, R.M., 2004. The effects of meteorological factors on atmospheric bioaerosol concentrations—a review. Sci. Total Environ. 326, 151–180.

Kallawicha, K., Chen, Y.C., Chao, H.J., Shen, W.C., Chen, B.Y., Chuan, Y.C., Guo, Y.L., 2017. Ambient fungal spore concentration in a subtropical metropolis: temporal distributions and meteorological determinants. Aerosol Air Qual. Res. 17, 2051–2063.

Lang-Yona, N., Dannemiller, K., Yamamoto, N., Burshtein, N., Peccia, J., Yarden, O., Rudich, Y., 2011. Annual distribution of allergenic fungal spores in atmospheric particulate matter in the Eastern Mediterranean; a comparative study between ergosterol and quantitative PCR analysis. Atmos. Chem. Phys. Discuss. 12, 2681–2690.

Lau, A.P., Lee, A.K., Chan, C.K., Fang, M., 2006. Ergosterol as a biomarker for the quantification of the fungal biomass in atmospheric aerosols. Atmos. Environ. 40, 249–259.

Lee, A.K.Y., Chan, C.K., Fang, M., Lau, A.P.S., 2004. The 3-hydroxy fatty acids as biomarkers for quantification and characterization of endotoxins and Gram-negative bacteria in atmospheric aerosols in Hong Kong. Atmos. Environ. 38, 6307–6317.

Li, X., Chen, M., Le, H.P., Wang, F., Guo, Z., Iinuma, Y., Chen, J., Herrmann, H., 2016. Atmospheric outflow of PM 2.5 saccharides from megacity Shanghai to East China Sea: impact of biological and biomass burning sources. Atmos. Environ. 143, 1–14.

Liang, L., Engling, G., He, K., Du, Z., Cheng, Y., Duan, F., 2013. Evaluation of fungal spore characteristics in Beijing, China, based on molecular tracer measurements. Environ. Res. Lett. 8, 014005.

Lin, W.-H., Li, C.-S., 2000. Associations of fungal aerosols, air pollutants, and meteorological factors. Aerosol Sci. Technol. 32, 359–368.

Liu, F., Lai, S., Reinmuth-Selzle, K., Scheel, J.F., Fröhlich-Nowoisky, J., Després, V.R., Hoffmann, T., Pöschl, U., Kampf, C.J., 2016. Metaproteomic analysis of atmospheric aerosol samples. Anal. Bioanal. Chem. 408, 6337–6348.

Matthias-Maser, S., Obolkin, V., Khodzer, T., Jaenicke, R., 1998. Seasonal variation of primary biological aerosol particles in the remote continental region of Lake Baikal/ Siberia. Atmos. Environ. 34, 3805–3811.

Menetrez, M.Y., Foarde, K.K., Dean, T.R., Betancourt, D.A., Moore, S.A., 2007. An evaluation of the protein mass of particulate matter. Atmos. Environ. 41, 8264–8274.

Pratt, K.A., DeMott, P.J., French, J.R., Wang, Z., Westphal, D.L., Heymsfield, A.J., Twohy, C.H., Prenni, A.J., Prather, K.A., 2009. In situ detection of biological particles in cloud ice-crystals. Nat. Geosci. 2, 398–401.

Prigione, V., Lingua, G., Marchisio, Filipello, 2004. Development and use of flow cytometry for detection of airborne fungi. Appl. Environ. Microbiol. 70, 1360–1365.

Sousa, S., Martins, F., Pereira, M., Alvim-Ferraz, M., Ribeiro, H., Oliveira, M., Abreu, I., 2008. Influence of atmospheric ozone, PM 10 and meteorological factors on the concentration of airborne pollen and fungal spores. Atmos. Environ. 42, 7452–7464.

Spracklen, D.V., Heald, C.L., 2014. The contribution of fungal spores and bacteria to regional and global aerosol number and ice nucleation immersion freezing rates. Atmos. Chem. Phys. 14, 9051–9059.

Winiwarter, W., Bauer, H., Caseiro, A., Puxbaum, H., 2009. Quantifying emissions of primary biological aerosol particle mass in Europe. Atmos. Environ. 43, 1403–1409.

Womiloju, T.O., Miller, J.D., Mayer, P.M., Brook, J.R., 2003. Methods to determine the biological composition of particulate matter collected from outdoor air. Atmos. Environ. 37, 4335–4344.

Wu, Y.H., Chan, C.C., Rao, C.Y., Lee, C.T., Hsu, H.H., Chiu, Y.H., Chao, H.J., 2007. Characteristics, determinants, and spatial variations of ambient fungal levels in the subtropical Taipei metropolis. Atmos. Environ. 41, 2500–2509.

Yang, Y., Chan, C.Y., Tao, J., Lin, M., Engling, G., Zhang, Z., Zhang, T., Su, L., 2012. Observation of elevated fungal tracers due to biomass burning in the Sichuan Basin at Chengdu City, China. Sci. Total Environ. 431, 68.

Zhang, T., Engling, G., Chan, C.-Y., Zhang, Y.-N., Zhang, Z.-S., Lin, M., Sang, X.-F., Li, Y., Li, Y.-S., 2010. Contribution of fungal spores to particulate matter in a tropical rainforest. Environ. Res. Lett. 5, 024010.

Kaynak Göster

2099 1275

Arşiv
Sayıdaki Diğer Makaleler

Determination of PCDD/Fs and dl-PCBs in ash and particle samples generated by an incineration plant for hospital and industrial waste in Northern of Algeria

Kerchich YACİNE, Moussaoui YACİNE, Scholl GEORGES, Eppe GAUTHİER

Emission characteristics and ozone formation potentials of VOCs from gasoline passenger cars at different driving modes

Weidong YANG, Qingyu ZHANG, Jingling WANG, Chunyao ZHOU, Yu ZHANG, Zhangrui PAN

Short-term passive tracer plume dispersion in convective boundary layer using a high-resolution WRF-ARW model

Sudheer R. BHİMİREDDY, Kiran BHAGANAGAR

Effects of Green space landscape patterns on particulate matter in Zhejiang Province, China

Haitian WU, Chang YANG, Jian CHEN, Shan YANG, Ting LU, Xintao LİN

Particulate matter estimation over a semi arid region Jaipur, India using satellite AOD and meteorological parameters

Manish SONİ, Swagata PAYRA, Sunita VERMA

Tiered transferable pollutant pricing for cooperative control of air quality to alleviate cross-regional air pollution in China

Changmin Lİ, Hongxia WANG, Xiaoqiang XİE, Jian XUE

Investigation of fungal spore characteristics in PM2.5 through organic tracers in Shanghai, China

Wenfei ZHU, Zhen CHENG, Lina LUO, Shengrong LOU, Yongpeng MA, Naiqiang YAN

Comparison of particle concentration vertical profiles between downtown and urban forest park in Nanjing (China)

Fan LİU, Xiaohong ZHENG, Hua QİAN

Discovering relationships and forecasting PM10 and PM2.5 concentrations in Bogotá, Colombia, using Artificial Neural Networks, Principal Component Analysis, and k-means clustering

Fabiana FRANCESCHİ, Martha COBO, Manuel FİGUEREDO

Study of temporal variability and mass closure of PM2.5 and its chemical constituents during weak south-west monsoon

Pradhi RAJEEV, Prashant RAJPUT, Amit Kumar SİNGH, Tarun GUPTA