Estimation of landfill methane emissions using stochastic search methods

Municipal solid waste (MSW) landfills significantly contribute to global methane emissions. In order to establish methane mitigation strategies, one important step is to quantify fugitive methane emissions resulting from organic waste decomposition. This paper presents a cost-effective method to estimate methane emissions using ambient air methane measurements taken within a landfill. Stochastic search techniques combined with the standard Gaussian dispersion model are employed to identify locations and emission rates of potential emission sources. Four stochastic search techniques are tested and compared. Results show effectiveness of the optimization-based emission estimation and sourcelocating scheme. Two hand-generated case-studies showed that methane flux estimation-error is lower than 15%. The method proves also useful in identifying locations of emission sources. Furthermore, when monitoring data of a real closed landfill are used, results showed that method results are comparable with those obtained using more established experimental Tracer-based technique.

Kaynakça

Abichou, T., Clark, J., Chanton, J., 2011. Reporting central tendencies of chamber measured surface emission and oxidation. Waste Manag. 31 (5), 1002e1008.

Alexander, A., Burklin, C., Singleton, A., 2005. Landfill Gas Emissions Model (LandGEM) Version 3.02 User's Guide. US/EPA, Washington DC, USA.

Babilotte, A., Lagier, T., Fiani, E., Taramini, V., 2010. Fugitive methane emissions from landfills: field comparison of five methods on a French landfill. J. Environ. Eng. 136 (8), 777e784.

Banga, J.R., Moles, C.G., Alonso, A.A., 2004. Global Optimization of Bioprocesses Using Stochastic and Hybrid Methods. Frontiers in Global Optimization. C. A. Floudas and P. Pardalos. Boston, MA, Springer US, pp. 45e70.

Cambaliza, M., Shepson, P., Bogner, J., Caulton, D., Stirm, B., 2015. Quantification and source apportionment of the methane emission flux from the city of Indianapolis. Elem. Sci. Anthropocene 3 (000037).

EEA, 2014. Annual European Union Greenhouse Gas Inventory 1990-2011 and Inventory Report 2014. European Environment Agency.

Elbeltagi, E., Hegazy, T., Grierson, D., 2005. Comparison among five evolutionarybased optimization algorithms. Adv. Eng. Inf. 19 (1), 43e53.

EPA, 2010. Methane and Nitrous Oxide Emissions from Natural Sources. U.S. Environmental Protection Agency, Washington, DC, USA.

EPA, 2014. Global Mitigation of Non-CO2 Greenhouse Gases: 2010-2030. U.S. Environmental Protection Agency, Washington, DC, USA.

Figueroa, V.K., Mackie, K.R., Guarriello, N., Cooper, C.D., 2009. A robust method for estimating landfill methane emissions. J. Air Waste Manag. Assoc. 59 (8), 925e935.

Foster-Wittig, T.A., Thoma, E.D., Green, R.B., Hater, G.R., Swan, N.D., Chanton, J.P., 2015. Development of a mobile tracer correlation method for assessment of air emissions from landfills and other area sources. Atmos. Environ.102, 323e330.

GasSim2.5, (2014), http://www.gassim.co.uk/index.html#.

Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley.

Goldsmith, C.D., Chanton, J., Abichou, T., Swan, N., Green, R., Hater, G., 2011. Methane emissions from 20 landfills across the United States using vertical radial plume mapping. J. Air Waste Manag. Assoc. 62 (2), 183e197.

Gonzalez-Valencia, R., Magana-Rodriguez, F., Maldonado, E., Salinas, J., Thalasso, F., 2014. Detection of hotspots and rapid determination of methane emissions from landfills via a ground-surface method. Environ. Monit. Assess. 187 (1), 4083.

Green, R.B., Swan, N.D., Thoma, E.D., Footer, T.L., Chanton, J., Hater, G.R., 2012. Measured and modeled methane emissions at closed MSW landfills without gas collection. In: Global Waste Management Symposium. At Phoenix, AZ, USA.

Hanna, S.R., Briggs, G.A., Hosker, R.P.J., 1982. Handbook on Atmospheric Diffusion: Medium: ED; Size: Pages: 107.

Hansen, N., 2006. Tutorial: Covariance Matrix Adaptation (CMA) Evolution Strategy. Institute of Computational Science, ETH Zurich.

Hansen, N., Müller, S.D., Koumoutsakos, P., 2003. Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMAES). Evol. Comput. 11 (1), 1e18.

Hansen, N., Ostermeier, A., 2001. Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9 (2), 159e195.

Henderson, D., Jacobson, S., Johnson, A., 2003. The theory and practice of simulated annealing. In: Handbook of Metaheuristics, vol. 57. F. Glover and G. Kochenberger, Springer, US, pp. 287e319.

Igel, C., Hansen, N., Roth,S., 2007. “Covariance matrix adaptation for multi-objective optimization.” Evol. Comput. 15 (1), 1e28.

IPCC, 2013. Climate Change 2013: the Physical Science Basis, Contribution of WorkingGroupI tothe Fifth Assessment Report of the Intergovernmental Panel on Climate Change, vol. 1535.

Jacobs, J., Scharff, H., 2005. Comparison of Methane Emission Models and Methane Emission Measurements. Workshop on Inventories and Projections of Greenhouse Gas Emissions from Waste. EEA, Copenhagen, Denmark.

Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.,1983. Optimization by simulated annealing. Science 220 (4598), 671e680.

Lohila, A., Laurila, T., Tuovinen, J.-P., Aurela, M., Hatakka, J., Thum, T., Pihlatie, M., Rinne, J., Vesala, T., 2007. “Micrometeorological measurements of methane and carbon dioxide fluxes at a municipal landfill. Environ. Sci. Technol. 41 (8), 2717e2722.

Mackie, K., Cooper, C., 2009. Landfill gas emission prediction using Voronoi diagrams and importance sampling. Environ. Model. Softw. 24 (10), 1223e1232.

Mønster, J., Samuelsson, J., Kjeldsen, P., Scheutz, C., 2015. Quantification of methane emissions from 15 Danish landfills using the mobile tracer dispersion method. Waste Manag. 35 (0), 177e186.

Mønster, J.G., Samuelsson, J., Kjeldsen, P., Rella, C.W., Scheutz, C., 2014. Quantifying methane emission from fugitive sources by combining tracer release and downwind measurements e a sensitivity analysis based on multiple field surveys. Waste Manag. 34 (8), 1416e1428.

Nelder, J.A., Mead, R.,1965. A simplex method for function minimization. Comput. J. 7 (4), 308e313.

Oonk, H., 2010. Literature review: methane from landfills. Innovations Environ. Technol. 75.

Pasquill, F., Smith, F.B., 1983. Atmospheric Diffusion. Ellis Harwood.

Press, W.H., Teukolsky, S.A., 1991. Simulated annealing optimization over continuous spaces. Comput. Phys. 5 (4), 451e469.

Rajaram, V., Siddiqui, F.Z., Khan, M.E., 2011. From Landfill Gas to Energy: Technologies and Challenges. Taylor & Francis.

Raphael, B., Smith, I., 2003. A direct stochastic algorithm for global search. Appl. Math. Comput. 146 (2), 729e758.

Raphael, B., Smith, I., 2005. Engineering applications of a direct search algorithm. PGSL Comput. Civ. Eng. 2005, 1e9.

Raphael,B.,Smith, I.F.C.,2013.EngineeringInformatics: FundamentalsofComputeraided Engineering, second ed. Wiley.

Scheutz, C., Kjeldsen, P., Bogner, J.E., De Visscher, A., Gebert, J., Hilger, H.A., HuberHumer, M., Spokas, K., 2009. Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Manag. Res. 27 (5), 409e455.

Scheutz, C., Samuelsson, J., Fredenslund, A.M., Kjeldsen, P., 2011. Quantification of multiple methane emission sources at landfills using a double tracer technique. Waste Manag. 31 (5), 1009e1017.

SCS, 2010. WMI SEM Investigation Sites Nationwide, SCS Field Services. Waste Management, Inc, Bedford, TX, USA.

Thoma, E., Green, R., Hater, G., Goldsmith, C., Swan, N., Chase, M., Hashmonay, R., 2010. Development of EPA OTM 10 for landfill applications. J. Environ. Eng.136 (8), 769e776.

Wark, K., Warner, C.F., Davis, W.T., 1998. Air Pollution: its Origin and Control. Addison-Wesley.

Yaghini, M., Momeni, M., Sarmadi, M., 2012. A Simplex-based simulated annealing algorithm for node-arc capacitated multicommodity network design. Appl. Soft Comput. 12 (9), 2997e3003.

Kaynak Göster

  • ISSN: 1309-1042
  • Yayın Aralığı: Yılda 12 Sayı
  • Başlangıç: 2010

4.4b 3.3b

Sayıdaki Diğer Makaleler

Selection of bias correction models for improving the daily PM10 forecasts of WRF-EURAD in Porto, Portugal

K.M. MOK, A.I. MİRANDA, K.V. YUEN, K.I. HOİ, A. MONTEİRO, I. RİBEİRO

Biomass burning tracers in rural and urban ultrafine particles in Xi'an, China

Chong-Shu ZHU, Jun-Ji CAO, Chuen-Jinn TSAİ, Zhi-Sheng ZHANG, Jun TAO

ARIMA analysis of the effect of land surface coverage on PM10 concentrations in a high-altitude megacity

Carlos ZAFRA, Yenifer ANGEL, Eliana TORRES

Survey of organochlorine pesticides in the atmosphere and soil of two typical landforms of Southern Anhui Province, China: Sources and air-soil exchange

Siquan WANG, Xiaoguo WU, Jiliang ZOU, Afeng CHEN, Xiucheng TAO, Yuhong CAO

Evaluation of indoor/outdoor urban air pollution by magnetic, chemical and microscopic studies

M. Jelenska, B. GORKA-KOSTRUBİEC, T. WERNER, M. Kadzialko-Hofmokl, I. Szczepaniak-Wnuk, T. Gonet, P. Szwarczewski

Estimation of landfill methane emissions using stochastic search methods

Tarek KORMİ, Nizar Bel Hadj ALİ, Tarek ABİCHOU, Roger GREEN

Recursive neural network model for analysis and forecast of PM10 and PM2.5

Fabio BİANCOFİORE, Marcella BUSİLACCHİO, Marco VERDECCHİA, Barbara TOMASSETTİ, Eleonora ARUFFO, Sebastiano BİANCO, Sinibaldo Di TOMMASO, Carlo COLANGELİ, Gianluigi ROSATELLİ, Piero Di CARLO

Temporal and spatial variability of ground level atmospheric methane concentrations in the Ebro River Delta

Alba AGUEDA, Claudia GROSSİ, Elsa PASTOR, Eva RİOJA, Laura Sanchez-García, Oscar BATET, Roger CURCOLL, Marina EALO, Manel NOFUENTES, PAOLA OCCHİPİNTİ, Xavier RODO, Josep-Anton MORGUİ

Wet deposition fluxes of atmospheric inorganic reactive nitrogen at an urban and rural site in the Indo-Gangetic Plain

Saumya SİNGH, Anshu SHARMA, Bablu KUMAR, U.C. KULSHRESTHA

Seasonal and spatial variations in dust deposition rate and concentrations of dust-borne heavy metals, a case study from Isfahan, central Iran

Samira NOROUZİ, Hossein KHADEMİ, Shamsollah AYOUBİ, Ángel Faz CANO, Jose A. ACOSTA