Characteristics of mass concentration, chemical composition, source apportionment of PM2.5 and PM10 and health risk assessment in the emerging megacity in China

In this study, 228 daily Particulate matter (PM) filters (57 Quartz and 57 Teflon samples for both PM2.5 and PM10, respectively) were collected from an urban site in Zhengzhou in typical months from 2014 autumn to 2015 summer representing the four seasons. PM concentrations, water-soluble inorganic ions, organic carbon, elemental carbon, and elements were determined, and positive matrix factorization was used for source apportionments. Health risks of toxic elements in PM2.5 and PM10 were also evaluated. The annual mean values of PM2.5 and PM10 were higher than the standards in China, and the highest seasonal concentrations of PM2.5 and PM10 were in winter. Secondary inorganic aerosols (SIAs) were the major component, with the ratio of SIAs/PM highest in summer. The seasonal concentrations of SO4 2 were high in winter and summer. Crustal elements mainly existed in PM2.5e10; however, elements from anthropogenic sources (i.e., Zn, Pb, Cu, As, Cd, and Mo) were more abundant in fine particles than in the coarse fraction. The main pollution sources were dust, SIAs, coal combustion, vehicle and road dust, and industry, accounting for 10%, 26%, 25%, 20% and 15% in PM2.5 and 32%, 14%, 24%, 18% and 8% in PM10, respectively. Dust source has the highest contribution in PM10; however, SIAs source has the highest content in fine particles. The carcinogenic risks of As to children through the daily intake pathway in PM2.5 and PM10 exceeded the acceptable level. Noncarcinogenic risks of As and Cd in PM2.5 and PM10 to children via the daily intake pathway were significant. Moreover, the sum of noncarcinogenic risks in PM10 via inhalation exposure for local residents and that via dermal absorption for children were significant. The details of the pollution characteristics and the results of source apportionments and health risks assessment of PM2.5 and PM10 in this study can play an important role for the government to formulate reasonable and effective policy to mitigate the atmospheric pollution of PM. To our knowledge, this systematic study is the first to investigate the chemical characterizations, source apportionments, and health effects of PM2.5 and PM10 in Zhengzhou.


Amato, F., Alastuey, A., Karanasiou, A., Lucarelli, F., Nava, S., Calzolai, G., Severi, M., Becagli, S., Gianelle, V.L., Colombi, C., Alves, C., Custodio, D., Nunes, T., Cerqueira, M., Pio, C., Eleftheriadis, K., Diapouli, E., Reche, C., Minguillon, M.C., Manousakas, M.-I., Maggos, T., Vratolis, S., Harrison, R.M., Querol, X., 2016.

AIRUSE-LIFEþ: a harmonized PM speciation and source apportionment in five southern European cities. Atmos. Chem. Phys. 16, 3289e3309.

Amato, F., Pandolfi, M., Viana, M., Querol, X., Alastuey, A., Moreno, T., 2009. Spatial and chemical patterns of PM10 in road dust deposited in urban environment. Atmos. Environ. 43, 1650e1659.

Arimoto, R., Duce, R.A., Savoie, D.L., Prospero, J.M., Talbot, R., Cullen, J.D., Tomza, U., Lewis, N.F., Ray, B.J., 1996. Relationships among aerosol constituents from Asia and the North Pacific during Pem-West A. J. Geophys. Res. 101, 2011e2023.

Aldabe, J., Elustondo, D., Santamaría, C., Lasheras, E., Pandolfi, M., Alastuey, A., Querol, X., Santamaría, J.M., 2011. Chemical characterisation and source apportionment of PM2.5 and PM10 at rural, urban and traffic sites in Navarra (North of Spain). Atmos. Res. 102, 191e205.

Bozlaker, A., Spada, N.J., Fraser, M.P., Chellam, S., 2013. Elemental characterization of PM2.5 and PM10 emitted from light duty vehicles in the Washburn Tunnel of Houston, Texas: release of rhodium, palladium, and platinum. Environ. Sci. Technol. 48, 54e62.

Brown, S.G., Eberly, S., Paatero, P., Norris, G.A., 2015. Methods for estimating uncertainty in PMF solutions: examples with ambient air and water quality data and guidance on reporting PMF results. Sci. Total Environ. 518, 626e635.

Bureau of Statistics of Henan Province, 2016. In: Henan Statistical Yearbook 2016. China Statistics Press, Beijing (in Chinese).

Bytnerowicz, A., Omasa, K., Paolletti, E., 2007. Integrated effects of air pollution and climate change on forest: a northern hemisphere perspective. Environ. Pollut. 147, 438e445.

Cadle, S.H., Mulawa, P.A., Hunsanger, E.C., Nelson, K., Ragazzi, R.A., Barrett, R., Gallagher, G.L., Lawson, D.R., Knapp, K.T., Snow, R., 1999. Composition of lightduty motor vehicle exhaust particulate matter in the Denver, Colorado Area. Environ. Sci. Technol. 33, 2328e2339.

Cesari, D., Donateo, A., Conte, M., Contini, D., 2016. Inter-comparison of source apportionment of PM10, using PMF and CMB in three sites nearby an industrial area in central Italy. Atmos. Res. 182, 282e293.

Chan, Y.C., Simpson, R.W., Mctainsh, G.H., Vowles, P.D., Cohen, D.D., Bailey, G.M., 1997. Characterisation of chemical species in PM2.5 and PM10 aerosols in Brisbane, Australia. Atmos. Environ. 31, 3773e3785.

Chan, C.K., Yao, X., 2008. Air pollution in mega cities in China. Atmos. Environ. 42, 1e42.

Cheng, S.H., Yang, L.X., Zhou, X.H., Xue, L.K., Gao, X.M., Zhou, Y., Wang, W.X., 2011. Size-fractionated water-soluble ions, situ PH and water content in aerosol on hazy days and the influences on visibility impairment in Jinan, China. Atmos. Environ. 45, 4631e4640.

Chow, J.C., Lowenthal, D.H., Chen, L.W.A., Wang, X., Watson, J.G., 2015. Mass reconstruction methods for PM2.5: a review. Air Qual. Atmos. Hlth 8, 243e263.

Dall’Osto, M., Querol, X., Amato, F., Karanasiou, A., Lucarelli, F., Nava, S., Calzolai, G., Chiari, M., 2013. Hourly elemental concentrations in PM2.5 aerosols sampled simultaneously at urban background and road site during SAPUSS e diurnal variations and PMF receptor modelling. Atmos. Chem. Phys. 13, 4375e4392.

Eldred, R.A., Cahill, T.A., Flocchini, R.G., 1997. Composition of PM2.5 and PM10 aerosols in the IMPROVE network. J. Air Waste Manage 47, 194e203.

Fang, G., Chang, C., Wu, Y., Fu, P.P., Yang, C., Chen, C., Chang, S., 2002. Ambient suspended particulate matters and related chemical species study in central Taiwan, Taichung during 1998e2001. Atmos. Environ. 36, 1921e1928.

Fu, Q.Y., Zhuang, G.S., Wang, J., Xu, C., Huang, K., Li, J., Hou, B., Lu, T., Streets, D.G., 2008. Mechanism of formation of the heaviest pollution episode ever recorded in the Yangtze River Delta, China. Atmos. Environ. 42, 2023e2036.

Furusj, E., Sternbeck, J., Cousins, A.P., 2007. PM10 source characterization at urban and highway roadside locations. Sci. Total Environ. 387, 206e219.

Gao, J., Tian, H., Cheng, K., Lu, L., Zheng, M., Wang, S., Hao, J., Wang, K., Hua, S., Zhu, C., Wang, Y., 2015. The variation of chemical characteristics of PM2.5 and PM10 and formation causes during two haze pollution events in urban Beijing, China. Atmos. Environ. 107, 1e8.

Garg, B.D., Cadle, S.H., Mulawa, P.A., Groblicki, P.J., Laroo, C., Parr, G.A., 2000. Brake wear particulate matter emissions. Environ. Sci. Technol. 34, 4463e4469.

Geng, N.B., Wang, J., Xu, Y.F., Zhang, W.D., Chen, C., Zhang, R.Q., 2013. PM2.5 in an industrial district of Zhengzhou, China: chemical composition and source apportionment. Particuology 11, 99e109.

Guo, Y.M., Tong, S.L., Zhang, Y.S., Barnett, A.G., Jia, Y.P., Pan, X.C., 2010. The relationship between particulate air pollution and emergency hospital visits for hypertension in Beijing. China. Sci. Total Environ. 408, 4446e4450.

Ho, K.F., Lee, S.C., Chow, J.C., Watson, J.G., 2003. Characterization of PM10 and PM2.5 source profiles for fugitive dust in Hong Kong. Atoms. Environ. 37, 1023e1032.

Hu, M., He, L., Zhang, Y., Wang, M., Kim, Y.P., Moon, K.C., 2002. Seasonal variation of ionic species in fine particles at Qingdao, China. Atoms. Environ. 36, 5853e5859.

Hu, X., Zhang, Y., Ding, Z.H., Wang, T.J., Lian, H.Z., Sun, Y.Y., Wu, J.C., 2012. Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmos. Environ. 57, 146e152.

Jang, E., Alam, M.S., Harrison, R.M., 2013. Source apportionment of polycyclic aromatic hydrocarbons in urban air using positive matrix factorization and spatial distribution analysis. Atmos. Environ. 79, 271e285.

Jiang, N., Dong, Z., Xu, Y.Q., Yu, F., Yin, S.S., Zhang, R.Q., Tang, X.Y., 2017a. Characterization of PM10and PM2.5 source profiles of fugitive dust in Zhengzhou, China. Aerosol Air Qual. Res. (accepted for publication) detail/AAQR-17-04-OA-0132.

Jiang, N., Li, Q., Su, F.C., Wang, Q., Yu, X., Kang, P.R., Zhang, R.Q., Tang, X.Y., 2017b. Chemical characteristics and source apportionment of PM2.5, between heavily polluted days and other days in Zhengzhou, China. J. Environ. Sci. https://

Kang, C.M., Lee, H.S., Kang, B.W., Lee, S.K., Sunwoo, Y., 2004. Chemical characteristics of acidic gas pollutants and PM2.5 species during hazy episodes in Seoul, South Korea. Atmos. Environ. 38, 4749e4760.

Kassomenos, P.A., Vardoulakis, S., Chaloulakou, A., Paschalidou, A.K., Grivas, G., Borge, R., Lumbrerasd, J., 2014. Study of PM10, and PM2.5 levels in three European cities: analysis of intra and inter urban variations. Atmos. Environ. 87, 153e163.

Kong, S.F., Ji, Y.Q., Lu, B., Chen, L., Han, B., Li, Z.Y., Bai, Z.P., 2011. Characterization of PM10 source profiles for fugitive dust in Fushun-a city famous for coal. Atmos. Environ. 45, 5351e5365.

Lai, S., Zhao, Y., Ding, A., Zhang, Y., Song, T., Zheng, J., Ho, K.F., Lee, S.-c., Zhong, L., 2016. Characterization of PM2.5 and the major chemical components during a 1- year campaign in rural Guangzhou, Southern China. Atmos. Res. 167, 208e215.

Li, Z., Hopke, P.K., Husain, L., Qureshi, S., Dutkiewicz, V.A., Schwab, J.J., Drewnick, F., Demerjian, K.L., 2004. Sources of fine particle composition in New York City. Atmos. Environ. 38, 6521e6529.

Lim, J.M., Lee, J.H., Moon, J.H., Chung, Y.S., Kim, K.H., 2010. Source apportionment of PM10 at a small industrial area using positive matrix factorization. Atmos. Res. 95, 88e100.

Liu, B.S., Song, N., Dai, Q.L., Mei, R.B., Sui, B.H., Bi, X.H., Feng, Y.C., 2016. Chemical composition and source apportionment of ambient PM2.5 during the nonheating period in Taiwan, China. Atmos. Res. 170, 23e33.

Malm, W.C., Sisler, J.F., Huffman, D., Eldred, R.A., Cahill, T.A., 1994. Spatial and seasonal trends in particle concentration and optical extinction in the United States. J. Geophys. Res. Atmos. 99, 1347e1370.

Manousakas, M., Papaefthymiou, H., Diapouli, E., Migliori, A., Karydas, A., Radovic, B., Eleftheriadis, K., 2016. Assessment of PM2.5 sources and their corresponding level of uncertainty in a coastal urban area using EPA PMF 5.0 enhanced diagnostics. Sci. Total Environ. 574, 155e164.

Ministry of Environmental Protection of the People's Republic of China, 2013. Exposure Factors Handbook of Chinese Population. China Environmental Press, Beijing (in Chinese).

Moosmüller, H., Chakrabarty, R.K., Arnott, W.P., 2009. Aerosol light absorption and its measurement: a review. J. Quant. Spectrosc. Radiat. Transf. 110, 844e878. National Bureau of Statistical of China, 2015. In: China Statistical Yearbook 2015. China Statistics Press, Beijing (in Chinese).

Paatero, P., Tapper, U., 1994. Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5, 111e126.

Putaud, J.P., Van Dingenen, R., Alastuey, A., Bauer, H., Birmili, W., Cyrys, J., Flentje, H., Fuzzi, S., Gehrig, R., Hansson, H.C., Harrison, R.M., Herrmann, H., Hitzenberger, R., Hüglin, C., Jones, A.M., Kasper-Giebl, A., Kiss, G., Kousa, A., Kuhlbusch, T.A.J., Loschau, G., Maenhaut, W., Molnar, A., Moreno, T., Pekkanen, J., Perrino, C., Pitz, M., Pusbaum, H., Querol, X., Rodriguez, S., Salma, I., Schwarz, J., Smolik, J., Scheneider, J., Spindler, G., Ten Brink, H., Tursic, J., Viana, M., Wiedensohler, A., Raes, F., 2010. A European aerosol phenomenology3: physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmos. Environ. 44, 1308e1320.

Querol, X., Viana, M., Alastuey, A., Amato, F., Moreno, T., Castillo, S., Pey, J., de la Rosa, J., Sanchez de la Campa, A., Arti nano, B., Salvador, P., García dos Santos, S., Fernandez-Patier, R., Moreno-Grau, S., Negral, L., Minguill on, M.C., Monfort, E., Gil, J.I., Inza, A., Ortega, L.A., Santamaría, J.M., Zabalza, J., 2007. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmos. Environ. 41, 7219e7231.

Saitoh, K., Sera, K., Hirano, K., Shirai, T., 2002. Chemical characterization of particles in winter-night smog in Tokyo. Atmos. Environ. 36, 435e440.

Shen, G.F., Xue, M., Yuan, S.Y., Zhang, J., Zhao, Q.Y., Li, B., Wu, H.S., Ding, A.J., 2014. Chemical compositions and reconstructed light extinction coefficients of particulate matter in a mega-city. in the western Yangtze River Delta, China. Atmos. Environ. 83, 14e20.

Shen, R., Schafer, K., Schnelle-Kreis, J., Shao, L., Norra, S., Kramar, U., Michalke, B., € Abbaszade, G., Streibel, T., Fricker, M., Chen, Y., 2016. Characteristics and sources of PM in seasonal perspective e a case study from one year continuously sampling in Beijing. Atmos. Pollut. Res. 7, 235e248.

Sternbeck, J., Åke Sjodin, Andr € easson, K., 2002. Metal emissions from road traf fic and the influence of resuspensiondresults from two tunnel studies. Atmos. Environ. 36, 4735e4744.

Tan, J.H., Duan, J.C., He, K.B., Ma, Y.L., Duan, F.K., Chen, Y., Fu, J.M., 2009. Chemical characteristics of PM2.5 during a typical haze episode in Guangzhou. J. Environ. Sci. 21, 774e781.

Tauler, R., Viana, M., Querol, X., Alastuey, A., Flight, R.M., Wentzell, P.D., Hopke, P.K., 2009. Comparison of the results obtained by four receptor modelling methods in aerosol source apportionment studies. Atmos. Environ. 43, 3989e3997.

Taylor, S.R., Mclennan, S.M., 1995. The geochemical evolution of the continental crust. Rev. Geophys. 33, 293e301.

Tian, Y.Z., Shi, G.L., Huang-fu, Y.Q., Song, D.L., Liu, J.Y., Zhou, L.D., Feng, Y.C., 2016. Seasonal and regional variations of source contributions for PM10 and PM2.5 in urban environment. Sci. Total Environ. 557e558, 697e704.

Turpin, B.J., Lim, H.J., 2001. Species contributions to PM2.5 mass concentrations Revisiting common assumptions for estimating organic mass. Aerosol. Sci. Tech. 35, 602e610.

US EPA, 2011a. Risk assessment guidance for superfund. In: Part a: Human Health Evaluation Manual; Part E, Supplemental Guidance for Dermal Risk Assessment; Part F, Supplemental Guidance for Inhalation Risk Assessment, vol. I.

US EPA, 2011b. The screening level (RSL) Tables (last updated June 2011). Available on-line at:

US EPA, 2011c. User's guide and background technical document for US EPA region 9's Preliminary remediation goals (PRG) table. risk/human/rb-concentrationtable/usersguide.htm.

US EPA, 2014. Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide. Office of Research and Development, Washington, DC. https://www.epa. gov/sites/production/files/2015-02/documents/pmf_5.0_user_guide.pdf.

US EPA, 2016. Definition and Procedure for the Determination of the Method Detection Limit, Revision 2. Office of Science and Technology, Washington, DC. In:

Wang, J., Hu, Z., Chen, Y., Chen, Z., Xu, S., 2013. Contamination characteristics and possible sources of PM10 and PM2.5 in different functional areas of Shanghai, China. Atmos. Environ. 68, 221e229.

Wang, J., Li, X., Jiang, N., Zhang, W., Zhang, R., Tang, X., 2015. Long term observations of PM 2.5-associated PAHs: comparisons between normal and episode days. Atmos. Environ. 104, 228e236.

Wang, Q., Jiang, N., Yin, S.S., Li, X., Yu, F., Guo, Y., Zhang, R.Q., 2017. Carbonaceous species in PM2.5, and PM10, in urban area of Zhengzhou in China: seasonal variations and source apportionment. Atmos. Res. 191, 1e11.

Wang, X.F., Wang, W.X., Yang, L.X., Gao, X.M., Nie, W., Yu, Y.C., Xu, P., Zhou, Y., Wang, Z., 2012. The secondary formation of inorganic aerosols in the droplet mode through heterogeneous aqueous reactions under haze conditions. Atmos. Environ. 63, 68e76.

Wang, Z.S., Duan, X.L., Liu, P., Nie, J., Huang, N., Zhang, J.L., 2009. Human exposure factors of Chinese people in environmental health risk assessment. Res. Environ. Sci. 22, 1164e1170 (in Chinese).

Xiao, H., Liu, C., 2004. Chemical characteristics of water soluble components in TSP over Guiyang, SW China, 2003. Atmos. Environ. 38, 6297e6306.

Yang, F., He, K., Ye, B., Chen, X., Cha, L., Cadle, S.H., Chan, T., Mulawa, P.A., 2005. One year record of organic and elemental carbon in fine particles in downtown Beijing and Shanghai. Atmos. Chem. Phys. 5, 1449e1457.

Yao, Q., Li, S.Q., Xu, H.W., Zhuo, J.K., Song, Q., 2009. Studies on formation and control of combustion particulate matter in China: a review. Energy 34, 1296e1309.

Yao, X.H., Chan, C.K., Fang, M., Cadle, S., Chan, T., Mulawa, P., He, K.B., Ye, B.M., 2002. The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China. Atmos. Environ. 36, 4223e4234.

Yao, X., Lau, A.P.S., Fang, M., Chan, C.K., Hu, M., 2003. Size distribution and formation of ionic species in atmospheric particulate pollutants in Beijing, China. Atmos. Environ. 37, 2991e3000.

Ye, B.M., Ji, X.L., Yang, H.Z., Yao, X.H., Chan, C.K., Cadle, S.H., Chan, T., Mulawa, P.A., 2003. Concentration and chemical composition of PM2.5 in Shanghai for a 1- year period. Atmos. Environ. 37, 499e510.

Yin, J., Harrison, R.M., 2008. Pragmatic mass closure study for PM1, PM2.5 and PM10 at roadside, urban background and rural sites. Atmos. Environ. 42, 980e988.

Yu, F., Yan, Q., Jiang, N., Su, F., Zhang, L., Yin, S., Li, Y., Zhang, R., 2016. Tracking pollutant characteristics during haze events at background site Zhongmu, Henan province, China. Atmos. Pollut. Res. 8, 64e73.

Zhang, R., Jing, J., Tao, J., Hsu, S.C., Wang, G., Cao, J., Lee, C.S.L., Zhu, L., Chen, Z., Zhao, Y., Shen, Z., 2013. Chemical characterization and source apportionment of PM2.5 in Beijing: seasonal perspective. Atmos. Chem. Phys. 13, 7053e7074.

Zhang, Y., Wang, X., Chen, H., Yang, X., Chen, J., Allen, J.O., 2009. Source apportionment of lead-containing aerosol particles in shanghai using single particle mass spectrometry. Chemosphere 74, 501e507.

Zheng, M., Salmon, L.G., Schauer, J.J., Zeng, L.M., Kiang, C.S., Zhang, Y.H., Cass, G.R., 2005. Seasonal trends in PM2.5 source contributions in Beijing, China. Atmos. Environ. 39, 3967e3976.

Kaynak Göster

1303 550

Sayıdaki Diğer Makaleler

Multiple-input–multiple-output general regression neural networks model for the simultaneous estimation of traffic-related air pollutant emissions


A review on nanoparticle dispersion from vehicular exhaust: Assessment of Indian urban environment


The relation between columnar and surface aerosol optical properties in a background environment

D. SZCZEPANİK, K.M. Markowicz

Characteristics of mass concentration, chemical composition, source apportionment of PM2.5 and PM10 and health risk assessment in the emerging megacity in China

Nan Jiang, Shasha Yin, Yue GUO, Jingyi Lİ, Panru KANG, Ruiqin Zhang, Xiaoyan TANG

Trends of BTEX in the central urban area of Iran: A preliminary study of photochemical ozone pollution and health risk assessment


Modelling study of the atmospheric composition over Cyprus


Combined membrane photocatalytic ozonation and wet absorption of elemental mercury


Evaluation of hazardous airborne carbonyls in five urban roadside dwellings: A comprehensive indoor air assessment in Sri Lanka

Chi Sing CHAN, Ranasinghege Sampath Aravinda RANASINGHE, Steven Sai Hang HO, Kin Fai HO, Steve Hung Lam YIM, A.G.T. SUGATHAPALA, Shun Cheng LEE, Wing Tat HUNG, Tien YU HUANG, Hong Qi ZHANG

Low-cost methodology to estimate vehicle emission factors


Greenhouse gas emission accounting at urban level: A case study of the city of Wroclaw (Poland)

Izabela SÓWKA, Yaroslav BEZYK