Toprak Termal Özellileri, Toprak Tekstürü ve Agregat Büyüklüğü Arasındaki Çoklu Etkileşimlerin Değerlendirilmesi

Toprakların termal özellikleri oldukça değişken olup, birçok faktör tarafından etkilenir. Ayrıca toprak termal özellikleri, toprak sıcaklığı ve sıcaklık rejimleri üzerinde de etkilidir. Toprağın termal özellikleri toprak su içeriği, toprağın yapısal bileşenleri ve agregasyon durumu tarafından önemli ölçüde etkilenir. Bu çalışmanın amacı, toprak tekstürüve agregat büyüklüğünün toprak ısısal özellikleri üzerindeki etkilerinin de Vries modeli ile değerlendirmektir. Bu çalışmada kaba, orta, ince tekstürlü ve farklı agregat büyüklüğüne (<4 mm, <2 mm ve <1 mm) sahip toprak örnekleri kullanılmıştır. Bu özelliklere sahip toprak örneklerinin, tarla kapasitesi koşullarında, termal iletkenlik, hacımsal ısı ve termal difüzivite gibi termal özellikleri hesaplanmıştır. Elde edilen sonuçlara göre, ısısal iletkenlik, hacımsal ısı ve ısısal yayınım açısından en yüksek değerler, toprak tekstürleri arasında, sırasıyla orta, ince ve kaba bünyeli topraklarda ortaya çıkmıştır. Termal iletkenlik ve termal difüzivite için en düşük değerler ise ince bünyeli toprakta tespit edilmiştir. Ayrıca, her bir toprak için en küçük agregatların (<1 mm) oluşturduğu örneklerde en düşük termal iletkenlik ve ısısal yayınım değerleri belirlenmiştir. Elde edilen sonuçlara göre, toprak tekstürü ve agregat büyüklüğünün toprağın ısısal özellikleri üzerinde önemli bir etkiye sahip olduğu belirlenmiştir. 

Assessment of Multiple Interactions between Soil Texture, Aggregate Size and Soil Thermal Properties

Soil thermal properties are highly dynamics and is influenced by a multitude of factors. Soil thermal properties affect soil temperature and its thermal regime. Soil water content, soil contribution and state of aggregation affect significantly soil thermal properties. The aim of this study was to determine and evaluate the effects of soil texture and aggregate size on soil thermal properties using the de Vries model. Soil samples with different textures, separated into different aggregate size groups (<4 mm, <2 mm and <1 mm), were used. Thermal properties of soil samples including thermal conductivity, volumetric heat capacity and thermal diffusivity were estimated at field capacity. The results showed that the maximum values for the thermal conductivity, volumetric heat capacity, and thermal diffusivity occurred medium (MTS)>fine, (FTS)>coarse, (CTS) textured soils. In all textural groups thermal conductivity and thermal diffusivity were the smallest in aggregate size <1 mm. Results indicated that soil texture and aggregate size distribution have great effect on the soil thermal properties.

___

  • Abu-Hamdeh, N.H., Reeder, R.C., 2000. Soil thermal conductivity: effects of density, moisture, salt concentration, and organic matter, Soil Sci. Soc. Amer. J., 64: 1285–1290.
  • Abu-Hamdeh, N.H., 2001. Measurement of the thermal conductivity of sandy loam and clay loam soils using single and dual probes. J. agric. Engng Res., 80 (2): 209-216.
  • Abu-Hamdeh, N.H., 2003. Thermal properties of soils as affected by density and water content. Biosystems Engineering, 86 (1): 97–102.
  • Alrtimi, A., Rouaini, M., Haigh, S., 2016. Thermal conductivity of a sandy soil. Appl. Therm. Eng., 106: 551-560.
  • Bremner, J.M., Mulvaney, C.S., 1982. Nitrogen-Total. In: Page, A.L., Ed., Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, American Society of Agronomy, Soil Science Society of America, 595-624.
  • Busby, J., 2015. Determination of thermal properties for horizontal ground collector loops. Proceedings World Geothermal Congress, Melbourne, Australia, 19-25 April.
  • Campbell, G.S., Jungbauer, J.D., Bidlake, W.R., Hungerford, R.D., 1994. Prediction the effect of temperature on soil thermal conductivity. Soil Sci., 158: 307-313.
  • Clarke, B.G., Agab, A., Nicholson, D., 2008. Model specification to determine thermal conductivity of soils. Proceedings of the Institution of Civil Engineers Geotechnical Engineering, 161: 161-168.
  • Cote, J., Konrad, J.M., 2005. Thermal conductivity of base-course materials. Can. Geotech. J., 42: 61-78.
  • Davarzani, H., Marcoux, M., Quintard, M., 2011. Effect of solid thermal conductivity and particle-particle contact on effective thermo-diffusion coefficient in porous media. Int. J. Therm. Sci., 50:b2328-39.
  • de Vries, D.A., 1963. Thermal properties of soils. In: Van Wijk WR, editor. Physics of the plant environment. New York: John Wiley & Sons, 210-235.
  • de Vries, D.A., 1964. Thermal properties of soils. In: van Wijk WR, editor. Physics of plant environment. Amsterdam: North-Holland Publishing Co., 210–35.
  • Demiralay, İ., 1993. Toprak Fiziksel Analizleri. Atatürk University Agriculture Faculty Publication, No 143.
  • Farouki, O.T., 1986. Thermal Properties of Soil, Series on Rock and Soil Mechanics. Trans. Tech. Publication., Germany.
  • Ghuman, B.S., Lal, R., 1985. Thermal conductivity, thermal diffusivity, and thermal capacity of some Nigerian soils. Soil Science, 139: 74–80.
  • Gori, F., Corasaniti, S., 2004. Theoretical prediction of the thermal conductivity and temperature variation inside mars soil analogues. Planet. Space Sci., 52: 91–99.
  • Heitman, J.L., Horton, R., Ren, T., Nassar, I.N., Davis, D., 2008.Test of coupled soil heat and water transfer prediction under transient boundary conditions. Soil Sci. Soc. Am. J., 72:1197–1207.
  • Horton, R., Weirenga, P.J., Nielsen, D.R., 1983. Evaluation of methods for determining the apparent thermal diffusivity of soil near the soil surface. Soil Sci. Soc. Am. J., 47: 25-32.
  • Ju, Z., Ren, T., Hu, C., 2011. Soil thermal conductivity as influenced by aggregation at intermediate water contents, Soil Sci. Soc. Am. J., 75: 26-29.
  • Kersten, M.S., 1949. Laboratory Research for the Determination of the Thermal Properties of Soils, Bulletin 28, Engineering Experiment Station, University of Minnesota, Minneapoli.
  • Kimura, S.D., Melling, L., Goh, K.J., 2012. Influence of soil aggregate size on greenhouse gas emission and uptake rate from tropical peat soil in forest and different oil palm development years, Geoderma, (185-186): 1–5.
  • Lipiec, J.,Hajnos, M., wieboda, R.S., 2012. Estimating effects of compaction on pore size distribution of soil aggregates by mercury porosimeter. Geoderma, (179–180): 20–27.
  • Luikov, A.V., Shashkov, A.G., Vasiliev, L.L., Fraiman, Y.U.E., 1968. Thermal conductivity of porous systems. Int. J. Heat Mass Transf., 11:117- 40.
  • McLean, E.O., 1982. Soil pH and lime requirement. p.199-224. In A.L. Page et al.(ed.) Methods of soil analysis. Part2.2nd ed. Agron.Monogr.9.ASA, Madison, WI. M. Smiths. K., Kirby, E.J., Massman, W., Baggett, L.S., 2016. Experimental and modeling study of forest fire effect on soil thermal conductivity. Pedosphere, 26(4): 462-473.
  • Nelson, D.W., Sommers, L.E., 1982. Total carbon, organic carbon and organic matter: In: A.L. Page, R.H. Miller and D.R. Keeney) Methods of soil analysis. Part 2 Chemical and Microbiological Properties, pp: 539-579.
  • Nusier, O.K., Abu-Hamdeh, N.H., 2003. Laboratory techniques to evaluate thermal conductivity for some soils. Heat Mass Transf., 39 (2): 119–123.
  • Olsen, S.R., Sommers, L.E., 1982. Determination of available phosphorus. In “Method of Soil Analysis”, vol. 2, ed. A. L. Page, R. H. Miller, and D. R. Keeney, 403. Madison, WI: American Society of Agronomy.
  • Park, E.J., Sul, W.J., Smucker, A.J.M., 2007. Glucose additions to aggregates subjected to drying and wetting cycles promote carbon sequestration and aggregate stability, Soil Biol. Biochem. J., 39: 2758–2768.
  • Rhoades, J.D., 1982a. Reclamation and management of salt-affected soils after drainage. Pages 125-197 in Proc. First Ann. Western Provincial Conf., Soil Salinity, Lethbridge, Alberta. 29 Nov. - 2 Dec. 1982.
  • Richards, L.A., 1954. Diagnosis and improvement of saline and alkali soils. Agricultural hand book 60. U.S. Dept. of Agriculture, Washington D.C., 160 p.
  • Shein, E.V., Mady, A.Y., 2016. Soil thermal parameters assessment by direct method and mathematical models. J. Soil Sci. Environ. Manage., 7(10): 166-172.
  • Slawin ski, C., Witkowska-Walczak, B., Lipiec, J., Nosalewicz, A., 2001. Effect of aggregate size on water movement in soils, Int. Agrophys., 25: 53–58.
  • Smits, K.M., Sakaki, T., Limsuwat, A., Illangasekare, T.H., 2010. Thermal conductivity of sands under varying moisture and porosity in drainage–wetting cycles. Vadose Zone J., 9: 1–9.
  • Thomas, G.W., 1982. Exchangeable cations. In A.L. Page et al., Eds., Methods of Soil Analysis. Agronomy 9, 2nd ed. American Society of Agronomy, Madison, WI, pp. 159–165.
  • van Wijk, W.R., de Vries, D.A., 1963. Periodic temperature variation in a homogeneous soil. P. 102-143. In: van Wijk, W.R., (ed.). Physics of plant environment. North-Holland Publ. Co., Amesterdam, the Netherlands.
  • Wiermann, C., Horn, R., 2000. Effect of different tillage systems on the recovery of soil structure following a single compaction event, In: Horn, R., van den Akker, J.J.H., Arvidsson, J., (Eds.), Subsoil Compaction - Distribution, Processes and Consequences. Advances in GeoEcology, Catena, Reiskirchen, vol. 32, Germany, 2000, pp. 339–350.
  • Yadav, M.R., Saxena, G.S., 1973. Effect of compaction and moisture content on specific heat and thermal capacity of soils. Journal Indian Society of Soil Science, 21: 129–132.