İklim değişikliği ve tarım üzerindeki etkileri

İklim tarımsal üretimi belirleyen temel faktördür. İklim değişikliği ya da küresel ısınma atmosfere sera gazlarının yayılmasından kaynaklanmaktadır. Tüm iklim modelleri gelecek yüzyılda yeryüzü sıcaklığının artacağını öngörmektedir. Bununla birlikte, bölgesel yağışla ilgili kesin tahminler yapılamamaktadır. Yine birçok bölgede yağıştaki değişimin yönüne dair oluşturulan modeller arasında da genel bir uyum bulunmamaktadır. Bitki büyümesi ve yetiştiriciliği hava olayları tarafından kontrol edildiği için bu tür değişikliklerin tarım üzerindeki sonuçlarının anlaşılması büyük bir önem arz etmektedir. Bu çalışma, olası iklim değişikliğinin tarım üzerine etkilerine ilişkin yapılan son araştırma bulgularını ele almaktadır.

İklim değişikliği ve tarım üzerindeki etkileri

Climate is a primary determinant of agricultural productivity. Climate change or global warming is caused by the release of greenhouse gases into the atmosphere. All climate models predict an increase in surface temperature for the next century. However, regional precipitation is predicted poorly, and the models often disagree even on the direction of precipitation change over most areas. Since plant growth and crop production are controlled by weather, it is important to understand the implications of such weather changes on agriculture. This paper examines the most recent research findings on possible climate change effects on agriculture.

___

  • Acock, B. and Allen, L.H. Jr, 1985. Crop responses to elevated carbon dioxide concentrations. In: Strain, B.R. and Cure, J.D. (eds) Direct Effects of Increasing Carbon Dioxide on Vegetation. DOE/ER-0238, Office of Energy Research, US Department of Energy, Washington, DC, pp. 53–97.
  • Adams, R.M., B.A. McCarl, K. Segerson, C. Rosenzweig, K.J. Bryant, B.L. Dixon, R. Conner, R.E. Evenson, and D., Ojima, 1998. The Economic Effects of Climate Change on U.S. Agriculture. Chapter 2 in The Economics of Climate Change, R. Mendelsohn and J. Neumann, eds. Cambridge University Press, Cambridge.
  • Baker, B.B., Hanson, J.D., Bourdon, R.M. and Eckert, J.B., 1993. The potential effects of climate change on ecosystem processes and cattle production on US rangelands. Climatic Change25, 97–117.
  • Batts, G.R., Morison, J.I.L., Ellis, R.H., Hadley, P. and Wheeler, T.R., 1997. Effects of CO2 and temperature on growth and yield of crops of winter wheat over several seasons. European Journal of Agronomy7, 43–52.
  • Bergthorsson, P., Bjornsson, H., Dyrmundsson, O., Gudmundsson B., Helgadottir, A., and Jonmundsson, J.V., 1988. The effects of climatic variations on agriculture in Iceland, in Parry, M.L., Carter, T.R., and Konijn, N.T., (eds), The Impact of Climatic Variations onAgriculture, Volume 1, Assessments in Cool Temperate and Cold Regions, Dordrecht, The Netherlands, Kluwer, pp.383-509.
  • Boote, K.J., Pickering, N.B. and Allen, L.H. Jr, 1997. Plant modeling: advances and gaps in our capability to predict future crop growth and yield. In: Allen, L.H., Jr, Kirkham, M.B., Olszyk, D.M. and Whitman, C.E. (eds) Advances in Carbon Dioxide Effects Research. ASA Special Publication No. 61, ASA-CSSA-SSSA, Madison, Wisconsin, pp. 179–228.
  • Cammel, M.E. and Knight, J.D., 1992. Effects of climatic change on the population dynamics of crop pests. Adv. Ecol. Res., 22, 117-162.
  • Carter, T.R., Nurro, M. and Torkko, S., 1996. Global climate change and agriculture in the north. Agriculture and Food Science in Finland. 5, 223 ̄385.
  • Chakraborty, S., Murray, G.M., Magarey, P.A., Yonow, T., O'Brien, R., Croft, B.J., Barbetti, M.J., Sivasithamparam, K., Old, K.M., Dudzinski, M.J., Sutherst, R.W., Penrose, L.J., Archer, C. and Emmett, R.W., 1998. Potential impact of climate change on plant diseases of economic significance to Australia. Australasian Plant Pathology 27, 15 ̄35.
  • Chakraborty, S., Tiedemann, A.V., Tieng, P.S., 2000, Climate change: potential impact on plant diseases. Environmental Pollution. 108, 3, 317-326.
  • Cotrufo, M.F., Ineson, P. and Scott, A., 1998. Elevated CO2 reduces the nitrogen concentration of plant tissues. Global Change Biology4, 43–54.
  • Coughenour, M.B. and Chen, D.-X,. 1997. Assessment of grassland ecosystem responses to atmospheric change using linked plant–soil process models. Ecological Applications7, 802–827.
  • Cure, J.D. and Acock, B., 1986. Crop responses to carbon dioxide doubling: a literature survey. Agricultural and Forest Meteorology 38, 127 ̄145.
  • Eamus, D., Jarvis, P.G.,1989. The direct effects of the increases in the global atmospheric concentration on natural and commercial temperate trees and forests. Advances in Ecological Research 19, 1–55.
  • Ellis, R.H., Hadley, P., Roberts, E.H. and Summerfield, R.J., 1990. Relations between temperature and crop development. In: Jackson, M., Ford-Lloyd, B.V. and Parry, M.L. (eds) Climatic Change and Plant Genetic Resources. Belhaven Press, London, pp. 85–115.
  • Drake, B.G., Gonzàlez-Meler, M.A., Long, S.P., 1997. More efficient plants: a consequence of rising atmospheric CO2? Annual Review of Plant Physiology and Molecular Biology48, 609–639.
  • Giorgi, R., Meehl, G.A., Kattenberg, A., Grassl, H., Mitchell, J.F.B., Stouffer, R.J., Tokioka, T., Weaver, A.J. and Wigley, T.M.L., 1998. Simulation of regional climate change with global coupled climate models and regional modelling techniques. In: Watson, R.T., Zinyowera, M.C., Moss, R.H. and Dokken, D.J. (eds) The Regional Impacts of Climate Change: an Assessment of Vulnerability. Cambridge University Press, New York, pp. 427–437.
  • Hanson, J.D., Baker, B.B. Bourdon, R.M., 1993. Comparison of the effects of different climate change scenarios on rangeland livestock production. Agricultural Systems. 41, 487-502.
  • Hibberd, J.M., Whitbread, R., Farrar, J.F., 1996. Effect of 700 mol per mol CO2 and infection of powdery mildew on the growth and partitioning of barley. New Phytologist. 1348, 309 ̄345.
  • Hillel, D., and Rosenzweig, C., 1989, The greenhouse efffect and its implications regarding global agriculture,Research Bulletin No. 724 Amherst, Massachusetts: Massachusetts Agricultural Experiment Station.
  • Holm, L.G., Plucknett, D.L., Pancho, J.V., Herberger, J.P., 1971. The World’s Worst Weeds: Distribution and Biology. University of Hawaii Press, Honolulu, 609 pp.
  • IPCC, 1996. Climate Change 1995: The Science of Climate Change. Houghton, J.T., Meira Filho, L.G., Callander, B.A., Harris, N., Kattenberg A., Maskell, K. (Eds.), Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
  • Johnson, R.C., Kanemasu, E.T., 1983. Yield and development of winter wheat at elevated temperatures. Agron. J. 75:561-565.
  • Kettunen, L., Mukula, J., Pohjonen, V., Rantanen, O., Varjo, U., 1988. The effects of climatic variations on agriculture in Finland", in Parry, M.L., Carter, T.R., and Konijn, N.T. (eds), The Impact of Climatic Variations on Agriculture, Volume 1, Assessments in Cool Temperate and Cold Regions, Dordrecht, The Netherlands: Kluwer, pp.511-614.
  • Kramer, P.J., 1981. Carbon dioxide concentration, photosynthesis, and dry matter production. BioScience31, 29–33.
  • Mederski, H.J. 1983. Effects of water and temperature stress on soybean plant growth and yield in human temperature climates. In C.D. Raper and P.J. Kramer (eds.). Crop Reactions to Water and Temperature Stresses in Humid Temperate Climates. Westview Press. Boulder. pp. 35-48.
  • Mitchell, R.A.C., Lawlor, D.W., Mitchell, V.J., Gibbard, C.L., White, E.M., Porter, J.R., 1995. Effects of elevated CO2 concentration and increased temperature on winter-wheat–test of ARCWHEAT1 simulation-model. Plant, Cell and Environment18, 736–748.
  • Monteith, J.L., 1981. Climatic variation and the growth of crops, Quarterly Journal of the Royal Meteorological Society, 107, 749-774.
  • Owensby, C.E., Coyne, P.I., Auen, L.M., 1993. Nitrogen and phosphorus dynamics of a tallgrass prairie ecosystem exposed to elevated carbon dioxide. Plant, Cell and Environment16, 843–850.
  • Owensby, C.E., Cochran, R.C., Auen, L.M., 1996. Effects of elevated carbon dioxide on forage quality for ruminants. In: Körner, Ch. and Bazzaz, F.A. (eds) Carbon Dioxide, Populations and Communities. Academic Press, San Diego, pp. 363–371.
  • Pearch, R.W., Bjorkman, O., 1983. Physiological effects, in Lemon, E.R. (ed.), Cdeg.2 and Plants: The Response of Plants to Rising Levels of Atmospheric Cdeg.2 Westview Press, pp. 65-105.
  • Read, J.J., Morgan, J.A., Chatterton, N.J., Harrison, P.A., 1997. Gas exchange and carbohydrate and nitrogen concentrations in leaves of Pascopyrum smithii (C3) and Bouteloua gracilis (C4) at different carbon dioxide concentrations and temperatures. Annals of Botany79, 197–206.
  • Rogers, H.H., Prior, S.A., Runion, G.B., Mitchell, R.J., 1996. Root to shoot ratio of crops as influenced by CO2. Plant and Soil187, 229–248.
  • Pitovranov, S.E., Iakimets, V., Kiselev, V. I., Sirotenko, O.D., 1988. The effects of climatic variations on agriculture in the subarctic zone of the USSR, in Parry, M.L., Carter, T.R., and Konijn, N.T. (eds), The Impact of Climatic Variations on Agriculture, Volume 1, Assessments in Cool Temperate and Cold Regions.Dordrecht, The Netherlands, Kluwer, pp.617-722.
  • Kettunen, L., Mukula, J., Pohjonen, V., Rantanen, O., Varjo, U., 1988. The effects of climatic variations on agriculture in Finland", in Parry, M.L., Carter, T.R., and Konijn, N.T. (eds), The Impact of Climatic Variations on Agriculture, Volume 1, Assessments in Cool Temperate and Cold Regions, Dordrecht, The Netherlands, Kluwer, pp.511-614.
  • Parry, M., Rosenzweig, C., Iglesias, A., Fischer, G., Livermore, M., 1999. Climate change and world food security: A new assessment. Global Environ. Change. 9, S51-S67.
  • Patterson, D.T., 1995. Weeds in a changing climate. Weed Sci., 43, 685-701.
  • Rao, G.D., Katyal, J.C., Sinha, S.K., Srinivas, K., 1995. Impacts of climate change on sorghum production in India: simulation study. In: Rosenzweig, C., Allen, L.H., Harper, L.A., Hollinger, S.E. and Jones, J.W. Editors, 1995. Climate Change and Agriculture: Analysis of Potential International Impacts American Society of Agronomy, Madison, USA, pp. 325 ̄337.
  • Reddy, V.R., Reddy, K.R., Wang, Z., 1997. Cotton responses to nitrogen, carbon dioxide, and temperature interactions. Soil Science and Plant Nutrition, 43, 1125 -1130.
  • Rogers, H.H., Runion, G.B., Krupa, S.V., 1994. Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere. Environmental Pollutants,83, 155–167.
  • Rogers, H.H., Runion, G.B., Krupa, S.V., Prior, S.A., 1997. Plant responses to atmospheric carbon dioxide enrichment: implications in root–soil microbe interactions. In: Advances in Carbon Dioxide Effects Research. ASA Special Publication No. 61, American Society of Agronomy, Madison, Wisconsin. pp. 1–34.
  • Rosenzweig, C., Parry, M.L., 1994. Potential impact of climate change on world food supply. Nature 367, 133 ̄138
  • Salinger, M.J., 1989. The effects of greenhouse gas warming on forestry and agriculture, Draft report for WMO Commission of Agrometeorology. Geneva, Switzerland.
  • Samarakoon, A.B., Muller, W.J., Gifford, R.M., 1995. Transpiration and leaf-area under elevated CO2 effects of soil-water status and genotype in wheat. Australian Journal of Plant Physiology22, 33–44.
  • Shaykewich, C.F., 1995. An appraisal of cereal crop phenology modelling. Canadian Journal of Plant Science75, 329–341.
  • Smith, J.B., Tirpak, D., 1990. The Potential Effects of Global Climate Change on the United States, Report to Congress (Washington, DC: US Environmental Protection Agency, 1989). A summary is given in Adams, R.M. (and others), Global climate change and US Agriculture. Nature. 345: 219-224.
  • Soussana, J.F., Casella, E., Loiseau, P., 1996. Long-term effects of CO2enrichment and temperature increase on a temperate grass sward. II. Plant nitrogen budgets and root fraction. Plant and Soil,182, 101–114.
  • Squire, G.R., Unsworth, M.H., 1988. Effects of CO2 and climatic change on agriculture, Contract Report to the Department of the Environment. Sutton Bonnington, UK, Department of Physiology and Environmental Science, University of Nottingham.
  • Strange, R.N., 1993. Plant Disease Control: Towards Environmentally Acceptable Methods. Chapman and Hall, London
  • Struik, P.C., Geertsema, J., Custers, C.H.M.G., 1989. Effects of shoot, root and stolon temperature on the development of the potato plant. III. Development of tubers. Potato Research32, 151–158.
  • Thompson, G.B., Brown, J.K.M., Woodward, F.I., 1993. The effects of host carbon dioxide, nitrogen and water supply on the infection of wheat by powdery mildew and aphids. Plant, Cell and Environment 16, 687 ̄694.
  • Wien, H.C., 1997. The cucurbits: cucumber, melon, squash and pumpkin. In: Wien, H.C. (ed.) The Physiology of Vegetable Crops. CAB International, Wallingford, UK, pp. 345–386.
  • Williams, G.D.V., Fautley, R.A., Jones, K.H., Stewart, R.B. and Wheaton, E.E., 1988. Estimating effects of climatic change on agriculture in Saskatchewan, Canada, in Parry, M.L., Carter, T.R. and Konijn, N.T. (eds.) The Impact of Climatic Variations on Agriculture, Volume 1, Assessments in Cool Temperate and Cold Regions. Dordrecht, The Netherlands, Kluwer, pp. 221-379.
  • Wilson, J.R., Deinum, B., Engels, F.M., 1991. Temperature effects on anatomy and digestibility of leaf and stem of tropical and temperate forage species. Netherlands Journal of Agricultural Science 39, pp. 31 ̄48.
  • Woodward, F.I., Thompson, G.B., McKee, I.F., 1991. The effects of elevated concentrations of carbon dioxide on individual plants, populations, communities and acosystems. Annals of Botany 67, 23-38.
Atatürk Üniversitesi Ziraat Fakültesi Dergisi-Cover
  • ISSN: 1300-9036
  • Yayın Aralığı: Yılda 3 Sayı
  • Yayıncı: AVES Yayıncılık