The use of Aloe Vera Gel Functionalized Biogenic Zinc-Oxide Nanoparticles Against Fish Putative Pathogens

Öz Indiscriminate uses of antibiotics have resulted in the development of antibiotic-resistance among pathogens which possess a potential risk to the ecosystem, aquaculture and human health. In this study, biogenic zinc oxide nanoparticles (ZnO-NPs) were synthesized using aqueous extract of Aloe vera gel (AVGE) and tested against putative pathogenic bacterial strains in-vitro. Ultravio-let-Visible (UV-VIS) spectroscopic analysis confirmed the synthesis of AVGE-ZnO-NPs while X-ray diffraction (XRD) and Scanning Electron microscope (SEM) analysis revealed that the average size of synthesized ZnO-NPs is within the nano range. The elemental and chemical compositions of synthesized ZnO-NPs were studied using Energy-dispersive X-ray spectroscopy (EDX) and Fouri-er-transform infrared (FTIR) spectrometer, respectively. Two widespread bacterial strains, Aero-monas veronii strain ONKP1 (MN602971) and Stenotrophomonas maltophilia strain ONKP2 (MN602972) that are known as emerging opportunistic pathogens in various marine and freshwater fishes as well as humans and other animals, were used as test organisms. AVGE-ZnO-NPs showed strong antibacterial activity, against the tested Gram-negative multi-drug resistant bacteria in the disc diffusion assay. The results of the present investigation could be useful for the development of new disease management strategies in the fisheries industry.

Kaynakça

Abraham, T. J., Paul, P., Adikesavalu, H., Patra, A. & Banerjee, S. (2016). Stenotrophomonas maltophilia as an opportunistic pathogen in cultured African catfish, Clarias gariepinus (Burchell, 1822). Aquaculture, 450, 168-172. [CrossRef]

Ali, K., Dwivedi, S., Azam, A., Saquib, Q., Al-Said, M. S., Alkhedhairy, A. A. & Musarrat, J. (2016). Aloe vera extract functionalized zinc oxide nanoparticles as nanoantibiotics against multi-drug resistant clinical bacterial isolates. Journal of Colloid and Interface Science, 472(2016), 145-156. [CrossRef]

Agarwal, H., Kumar, S. V. & Rajeshkumar, S. (2017). A review on green synthesis of zinc oxide nanoparticles–An eco-friendly approach. Resource-Efficient Technologies, 3(4), 406-413. [CrossRef]

Anjugam, M., Vaseeharan, B., Iswarya, A., Gobi, N., Divya, M., Thangaraj, M. P. & Elumalai, P. (2018). Effect of β-1, 3 glucan binding protein based zinc oxide nanoparticles supplemented diet on immune response and disease resistance in Oreochromis mossambicusagainst Aeromonas hydrophila. Fish and Shellfish Immunology, 76, 247-259. [CrossRef]

Austin, B. & Austin, D. A. (2016) Aeromonadaceae Representatives (Motile Aeromonads). In: Bacterial Fish Pathogens. Springer, Cham. [CrossRef]

Awad, A., Zaglool, A. W., Ahmed, S. A. & Khalil, S. R. (2019). Transcriptomic profile change, immunological response and disease resistance of Oreochromis niloticus fed with conventional and Nano-Zinc oxide dietary supplements. Fish and Shellfish Immunology, 93, 336-343. [CrossRef]

Azizi, S., Mohamad, R. & Mahdavi Shahri, M. (2017). Green microwave-assisted combustion synthesis of zinc oxide nanoparticles with Citrullus colocynthis (L.) Schrad: characterization and biomedical applications. Molecules, 22(2), 301. [CrossRef]

Bharti, S. K. & Singh, S. K. (2009). Metal based drugs: Current use and future potential. Der Pharmacia Lettre, 1(2), 39-51.

Bisht, G. & Rayamajhi, S. (2016). ZnO nanoparticles: a promising anticancer agent. Nanobiomedicine, 3(Godište 2016), 3-9. [CrossRef]

Budiati, T., Rusul, G., Wan-Abdullah, W. N., Arip, Y. M., Ahmad, R. & Thong, K. L. (2013). Prevalence, antibiotic resistance and plasmid profiling of Salmonella in catfish (Clarias gariepinus) and tilapia (Tilapia mossambica) obtained from wet markets and ponds in Malaysia. Aquaculture, 372, 127-132. [CrossRef]

Chandran, S., Sunny, J. C., Chandran, S. & Bellan, C. (2018). Enhanced Antimicrobial activity of Aloe vera blended Zinc Oxide Nanoparticles in PVA matrix. Materials Today: Proceedings, 5(8), 16190-16198. [CrossRef]

Chupani, L., Niksirat, H., Velíšek, J., Stará, A., Hradilová, Š., Kolařík, J., Panáček, A. & Zusková, E. (2018). Chronic dietary toxicity of zinc oxide nanoparticles in common carp (Cyprinus carpio L.): tissue accumulation and physiological responses. Ecotoxicology and Environmental Safety, 147, 110-116. [CrossRef]

Connolly, M., Fernández, M., Conde, E., Torrent, F., Navas, J. M. & Fernández-Cruz, M. L. (2016). Tissue distribution of zinc and subtle oxidative stress effects after dietary administration of ZnO nanoparticles to rainbow trout. Science of The Total Environment, 551, 334-343. [CrossRef]

Das, S., Mitra, S., Khurana, S. P. & Debnath, N. (2013). Nanomaterials for biomedical applications. Frontiers in life science, 7(3-4), 90-98. [CrossRef]

Deb, S., Kalita, P. K. & Datta, P. (2013). Optical properties of green synthesized ZnO nanocomposites. Indian Journal of Physics, 87(12), 1177-1182. [CrossRef]

De Villiers, M. M., Aramwit, P. & Kwon, G. S. (2008). Nanotechnology in drug delivery. Springer: Science & Business Media. ISBN 9780387776675 [CrossRef]Dimapilis, E. A. S., Hsu, C. S., Mendoza, R. M. O. & Lu, M. C. (2018). Zinc oxide nanoparticles for water disinfection. Sustainable Environment Research, 28(2), 47-56. [CrossRef]

Elumalai, K., Velmurugan, S., Ravi, S., Kathiravan, V. & Raj, G. A. (2015). Bio-approach: Plant mediated synthesis of ZnO nanoparticles and their catalytic reduction of methylene blue and antimicrobial activity. Advanced Powder Technology, 26(6), 1639-1651. [CrossRef]

Elshama, S. S., Abdallah, M. E. & Abdel-Karim, R. I. (2018). Zinc oxide nanoparticles: therapeutic benefits and toxicological hazards. The Open Nanomedicine Journal, 5(1), 16-22. [CrossRef]

Faiz, H., Zuberi, A., Nazir, S., Rauf, M. & Younus, N. (2015). Zinc oxide, zinc sulfate and zinc oxide nanoparticles as source of dietary zinc: comparative effects on growth and hematological indices of juvenile grass carp (Ctenopharyngodon idella). International Journal of Agriculture and Biology, 17(3), 568-574. [CrossRef]

Furushita, M., Okamoto, A., Maeda, T., Ohta, M. & Shiba, T., 2005. Isolation of multidrug-resistant Stenotrophomonas maltophilia from cultured yellowtail (Seriola quinqueradiata) from a marine fish farm. Applied and environmental microbiology, 71(9), 5598-5600. [CrossRef]

Gopalakrishnan, R., Hawley, H. B., Czachor, J. S., Markert, R. J. & Bernstein, J. M. (1999). Stenotrophomonas maltophilia infection and colonization in the intensive care units of two community hospitals: a study of 143 patients. Heart and lung, 28(2), 134-141. [CrossRef]

Geng, Y., Wang, K., Chen, D., Huang, X., He, M. & Yin, Z. (2010). Stenotrophomonas maltophilia, an emerging opportunist pathogen for cultured channel catfish, Ictalurus punctatus, in China. Aquaculture, 308(3-4), 132-135. [CrossRef]

Ghosh, K., Banerjee, S., Moon, U. M., Khan, H. A. & Dutta, D. (2017). Evaluation of gut associated extracellular enzyme-producing and pathogen inhibitory microbial community as potential probiotics in Nile tilapia, Oreochromis niloticus. International Journal of Aquaculture, 7(23), 143-158. [CrossRef]

Gunalan, S., Sivaraj, R. & Rajendran, V. (2012). Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Progress in Natural Science: Materials International, 22(6), 693-700. [CrossRef]

Gupta, M., Tomar, R. S., Kaushik, S., Mishra, R. K. & Sharma, D. (2018). Effective antimicrobial activity of green ZnO nano particles of Catharanthus roseus. Frontiers in Microbiology, 9, 2030. [CrossRef]

Hassan, M. A., Noureldin, E. A., Mahmoud, M. A. & Fita, N. A., 2017. Molecular identification and epizootiology of Aeromonas veronii infection among farmed Oreochromis niloticus in Eastern Province, KSA. The Egyptian Journal of Aquatic Research, 43(2), 161-167. [CrossRef]

Hoai, T. D., Trang, T. T., Van Tuyen, N., Giang, N. T. H. & Van Van, K. (2019). Aeromonas veronii caused disease and mortality in channel catfish in Vietnam. Aquaculture, 513, 734425. [CrossRef]

Janda, J. M. & Abbott, S. L. (2010). The genus Aeromonas: taxonomy, pathogenicity, and infection. Clinical microbiology reviews, 23(1), 35-73. [CrossRef]

Jin, S. E. & Jin, H. E. (2019). Synthesis, Characterization, and Three-Dimensional Structure Generation of Zinc Oxide-Based Nanomedicine for Biomedical Applications. Pharmaceutics, 11(11), 575. [CrossRef]

Kaya, H., Aydın, F., Gürkan, M., Yılmaz, S., Ates, M., Demir, V. and Arslan, Z. (2016). A comparative toxicity study between small and large size zinc oxide nanoparticles in tilapia (Oreochromis niloticus): Organ pathologies, osmoregulatory responses and immunological parameters. Chemosphere, 144, 571-582. [CrossRef]

Khosravi-Katuli, K., Prato, E., Lofrano, G., Guida, M., Vale, G. & Libralato, G. (2017). Effects of nanoparticles in species of aquaculture interest. Environmental Science and Pollution Research, 24(21), 17326-17346. [CrossRef]

Looney, W. J., Narita, M. & Mühlemann, K. (2009). Stenotrophomonas maltophilia: an emerging opportunist human pathogen. The Lancet infectious diseases, 9(5), 312-323. [CrossRef]

Luis, A. I. S., Campos, E. V. R., de Oliveira, J. L. & Fraceto, L. F. (2019). Trends in aquaculture sciences: from now to use of nanotechnology for disease control. Reviews in Aquaculture, 11(1), 119-132. [CrossRef]

Mahendiran, D., Subash, G., Selvan, D. A., Rehana, D., Kumar, R. S. & Rahiman, A. K. (2017). Biosynthesis of zinc oxide nanoparticles using plant extracts of Aloe vera and Hibiscus sabdariffa: Phytochemical, antibacterial, antioxidant and anti-proliferative studies. BioNanoScience, 7(3), 530-545. [CrossRef]

Marathe, N. P., Gaikwad, S. S., Vaishampayan, A. A., Rasane, M. H., Shouche, Y. S. & Gade, W. N. (2016). Mossambicus tilapia (Oreochromis mossambicus) collected from water bodies impacted by urban waste carries extended-spectrum beta-lactamases and integron-bearing gut bacteria. Journal of biosciences, 41(3), 341-346. [CrossRef]

Martínez-Carmona, M., Gun’ko, Y. & Vallet-Regí, M. (2018). ZnO nanostructures for drug delivery and theranostic applications. Nanomaterials, 8(4), 268. [CrossRef]

Mirzaei, H. & Darroudi, M. (2017). Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceramics International, 43(1), 907-914. [CrossRef]

Musa, N., Wei, L. S., Shaharom, F. & Wee, W. (2008). Surveillance of Bacteria Species in Diseased Freshwater Ornamental Fish from Aquarium Shop. World Applied Sciences Journal, 3(6): 903-905.

Nath, M. R., Ahmed, A. N., Gafur, M. A., Miah, M. Y. & Bhattacharjee, S. (2018). ZnO nanoparticles preparation from spent zinc–carbon dry cell batteries: studies on structural, morphological and optical properties. Journal of Asian Ceramic Societies, 6(3), 262-270. [CrossRef]

Nawaz, M., Sung, K., Khan, S. A., Khan, A. A. & Steele, R. (2006). Biochemical and molecular characterization of tetracycline-resistant Aeromonas veronii isolates from catfish. Applied and environmental microbiology, 72(10), 6461-6466. [CrossRef]

Onuegbu, C. U., Aggarwal, A. & Singh, N. B. (2018). ZnO nanoparticles as feed supplement on growth performance of cultured African catfish fingerlings. Journal of Scientific and Industrial Research, 77, 213-218.

Parthasarathy, G., Saroja, M. & Venkatachalam, M. (2017). Bio-synthesized nano-formulation of zinc oxide-Aloe vera and to study their characterization and antibacterial activities against multiple pathogens. International Journal of Pharmaceutical Sciences and Research, 8(2), 900-907.

Patel, V. K., Sundriyal, P. & Bhattacharya, S. (2017). Aloe vera vs. poly (ethylene) glycol-based synthesis and relative catalytic activity investigations of ZnO nanorods in thermal decomposition of potassium perchlorate. Particulate Science and Technology, 35(3), 361-368. [CrossRef]

Pati, P. & Mondal, K. (2019). A review on the dietary requirements of trace minerals in freshwater fish. Journal of Environment and Sociobiology, 16(2), 171-206.

Qian, Y., Yao, J., Russel, M., Chen, K. & Wang, X. (2015). Characterization of green synthesized nano-formulation (ZnO–A.vera) and their antibacterial activity against pathogens. Environmental Toxicology and Pharmacology, 39(2), 736-746. [CrossRef]

Raje, K., Ojha, S., Mishra, A., Munde, V. K., Rawat, C. & Chaudhary, S. K. (2018). Impact of supplementation of mineral nano particles on growth performance and health status of animals: a review. Journal of Entomology and Zoology Studies, 6(3), 1690-1694.

Sangeetha, G., Rajeshwari, S. & Venckatesh, R. (2011). Green synthesis of zinc oxide nanoparticles by Aloe barbadensis miller leaf extract: Structure and optical properties. Materials Research Bulletin, 46(12), 2560-2566. [CrossRef]

Shaalan, M., Saleh, M., El-Mahdy, M. & El-Matbouli, M. (2016). Recent progress in applications of nanoparticles in fish medicine: a review. Nanomedicine: Nanotechnology, Biology and Medicine, 12(3), 701-710. [CrossRef]

Shaalan, M. I., El-Mahdy, M. M., Theiner, S., El-Matbouli, M. & Saleh, M. (2017). In-vitro assessment of the antimicrobial activity of silver and zinc oxide nanoparticles against fish pathogens. Acta Veterinaria Scandinavica, 59(1), 49. [CrossRef]

Shah, B. R. & Mraz, J. (2020). Advances in nanotechnology for sustainable aquaculture and fisheries. Reviews in Aquaculture, 12(2), 925-942. [CrossRef]

Singh, A., Singh, N. B., Afzal, S., Singh, T. & Hussain, I. (2018). Zinc oxide nanoparticles: a review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants. Journal of Materials Science, 53(1), 185-201. [CrossRef]

Skjolding, L. M., Sørensen, S. N., Hartmann, N. B., Hjorth, R., Hansen, S. F., & Baun, A. (2016) A critical review of aquatic ecotoxicity testing of nanoparticles - the quest for disclosing nanoparticle effects. Angewandte Chemie, 55, 15224–15239. [CrossRef]

Sreedharan, K., Philip, R. & Singh, I. B. (2011). Isolation and characterization of virulent Aeromonas veronii from ascitic fluid of oscar Astronotus ocellatus showing signs of infectious dropsy. Diseases of aquatic organisms, 94(1), 29-39. [CrossRef]

Sundrarajan, M., Ambika, S. & Bharathi, K. (2015). Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against pathogenic bacteria. Advanced Powder Technology, 26(5), 1294-1299. [CrossRef]

Sun, J., Zhang, X., Gao, X., Jiang, Q., Wen, Y. & Lin, L. (2016). Characterization of virulence properties of Aeromonas veroniiisolated from diseased Gibel Carp (Carassius gibelio). International journal of molecular sciences, 17(4), 496. [CrossRef]

Swain, P., Nayak, S. K., Sasmal, A., Behera, T., Barik, S. K., Swain, S. K., Mishra, S. S., Sen, A. K., Das, J. K. & Jayasankar, P. (2014). Antimicrobial activity of metal based nanoparticles against microbes associated with diseases in aquaculture. World Journal of Microbiology and Biotechnology, 30(9), 2491-2502. [CrossRef]

Swain, P. S., Rao, S. B., Rajendran, D., Dominic, G. & Selvaraju, S. (2016).Nano zinc, an alternative to conventional zinc as animal feed supplement: A review. Animal Nutrition, 2(3), 134-141. [CrossRef]

Tekedar, H. C., Kumru, S., Blom, J., Perkins, A. D., Griffin, M. J., Abdelhamed, H., Karsi, A. & Lawrence, M. L. (2019). Comparative genomics of Aeromonas veronii: Identification of a pathotype impacting aquaculture globally. PloS one, 14(8), e0221018. [CrossRef]

Thongkao, K. & Sudjaroen, Y. (2019). Beta-lactamase and integron-associated antibiotic resistance genes of Klebsiella pneumoniaeisolated from Tilapia fishes (Oreochromis niloticus). Journal of Applied Pharmaceutical Science, 9(1), 125-30.

Varghese, E. & George, M. (2015). Green synthesis of zinc oxide nanoparticles. International Journal of Advance Research in Scienceand Engineering, 4(1), 307-314.

Vimala, K., Sundarraj, S., Paulpandi, M., Vengatesan, S. & Kannan, S. (2014). Green synthesized doxorubicin loaded zinc oxide nanoparticles regulates the Bax and Bcl-2 expression in breast and colon carcinoma. Process biochemistry, 49(1), 160-172. [CrossRef]

Xiong, H. M. (2013). ZnO nanoparticles applied to bio-imaging and drug delivery. Advanced Materials, 25(37), 5329-5335. [CrossRef]

Zhou, Q., Lv, J., Cai, L., Ren, Y., Chen, J., Gao, D., Lu, Z. & Wang, C. (2017). Preparation and characterization of ZnO/AGE MNPs with aloe gel extract and its application on linen fabric. The Journal of The Textile Institute, 108(8), 1371-1378. [CrossRef]

Zhu, P., Weng, Z., Li, X., Liu, X., Wu, S., Yeung, K. W. K., Wang, X., Cui, Z., Yang, X. & Chu, P. K. (2016). Biomedical applications of functionalized ZnO nanomaterials: from biosensors to bioimaging. Advanced Materials Interfaces, 3(1), 1500494. [CrossRef]

Wang, J., Wang, A. & Wang, W. X. (2017). Evaluation of nano-ZnOs as a novel Zn source for marine fish: importance of digestive physiology. Nanotoxicology, 11(8), 1026-1039. [CrossRef]Watanabe, T., Kiron, V. & Satoh, S. (1997). Trace minerals in fish nutrition. Aquaculture, 151(1-4), 185-207. [CrossRef]

Kaynak Göster

Bibtex @araştırma makalesi { ase773014, journal = {Aquatic Sciences and Engineering}, issn = {}, eissn = {2602-473X}, address = {}, publisher = {İstanbul Üniversitesi}, year = {2021}, volume = {36}, pages = {101 - 108}, doi = {10.26650/ASE2020773014}, title = {The use of Aloe Vera Gel Functionalized Biogenic Zinc-Oxide Nanoparticles Against Fish Putative Pathogens}, key = {cite}, author = {Patı, Puja and Mondal, Kausik and Mandal, Madhusudan} }
APA Patı, P , Mondal, K , Mandal, M . (2021). The use of Aloe Vera Gel Functionalized Biogenic Zinc-Oxide Nanoparticles Against Fish Putative Pathogens . Aquatic Sciences and Engineering , 36 (3) , 101-108 . DOI: 10.26650/ASE2020773014
MLA Patı, P , Mondal, K , Mandal, M . "The use of Aloe Vera Gel Functionalized Biogenic Zinc-Oxide Nanoparticles Against Fish Putative Pathogens" . Aquatic Sciences and Engineering 36 (2021 ): 101-108 <
Chicago Patı, P , Mondal, K , Mandal, M . "The use of Aloe Vera Gel Functionalized Biogenic Zinc-Oxide Nanoparticles Against Fish Putative Pathogens". Aquatic Sciences and Engineering 36 (2021 ): 101-108
RIS TY - JOUR T1 - The use of Aloe Vera Gel Functionalized Biogenic Zinc-Oxide Nanoparticles Against Fish Putative Pathogens AU - Puja Patı , Kausik Mondal , Madhusudan Mandal Y1 - 2021 PY - 2021 N1 - doi: 10.26650/ASE2020773014 DO - 10.26650/ASE2020773014 T2 - Aquatic Sciences and Engineering JF - Journal JO - JOR SP - 101 EP - 108 VL - 36 IS - 3 SN - -2602-473X M3 - doi: 10.26650/ASE2020773014 UR - Y2 - 2020 ER -
EndNote %0 Aquatic Sciences and Engineering The use of Aloe Vera Gel Functionalized Biogenic Zinc-Oxide Nanoparticles Against Fish Putative Pathogens %A Puja Patı , Kausik Mondal , Madhusudan Mandal %T The use of Aloe Vera Gel Functionalized Biogenic Zinc-Oxide Nanoparticles Against Fish Putative Pathogens %D 2021 %J Aquatic Sciences and Engineering %P -2602-473X %V 36 %N 3 %R doi: 10.26650/ASE2020773014 %U 10.26650/ASE2020773014
ISNAD Patı, Puja , Mondal, Kausik , Mandal, Madhusudan . "The use of Aloe Vera Gel Functionalized Biogenic Zinc-Oxide Nanoparticles Against Fish Putative Pathogens". Aquatic Sciences and Engineering 36 / 3 (Nisan 2021): 101-108 .
AMA Patı P , Mondal K , Mandal M . The use of Aloe Vera Gel Functionalized Biogenic Zinc-Oxide Nanoparticles Against Fish Putative Pathogens. Aqua Sci Eng. 2021; 36(3): 101-108.
Vancouver Patı P , Mondal K , Mandal M . The use of Aloe Vera Gel Functionalized Biogenic Zinc-Oxide Nanoparticles Against Fish Putative Pathogens. Aquatic Sciences and Engineering. 2021; 36(3): 101-108.
IEEE P. Patı , K. Mondal ve M. Mandal , "The use of Aloe Vera Gel Functionalized Biogenic Zinc-Oxide Nanoparticles Against Fish Putative Pathogens", Aquatic Sciences and Engineering, c. 36, sayı. 3, ss. 101-108, Nis. 2021, doi:10.26650/ASE2020773014