DOĞAL TATLISU ORTAMLARINDAN YIĞIN HALİNDE TOPLANAN Cladophora glomerata (LINNAEUS) KÜTZING VE Mougeotia sp. TÜRLERİNİN BİYOKİMYASAL KOMPOZİSYONU

Tatlısu algleri sucul ekosistemlerde biyoaktif maddelerin önemli kaynaklarıdır. Bu sekonder metabolitler kozmetik, gıda ve ilaç endüstrisinde kullanılmaktadırlar. Cladophora glomerata (Linnaeus) Kützing ve Mougeotia sp. tatlı sularda yaygın olarak bulunan filamentli makroalg olup, birçok organizma için yaşam alanı ve besin kaynağıdır. Bu çalışmanın amacı, doğal habitatta yetişen iki makroalg C. glomerata ve Mougeotia sp.’nin pigment, protein, karbonhidrat, lipit ve kül oranlarının tespit edilerek, biyokütle üretmek için doğal ortamlarının platform olarak kullanılmasıdır. C. glomerata ve Mougeotia sp.'nin (% kuru ağırlık) üzerinden sırasıyla; protein (%14.26 ve %6.15), karbonhidrat (%64.52 ve %70.91), lipit (%0.55 ve %1.00) ve kül (%20.73 ve %18.74) miktarları tayin edilmiştir. C. glomerata’nın toplam klorofil miktarı (9.06 ±0.07µg/mL) ve toplam karoten miktarı (756.4 ±0.05µg/mL) olarak ölçülmüştür. Mougeotia sp.’nin toplam klorofil miktarı (2.18 ±0.17µg/mL) ve toplam karoten miktarı (196.4 ±0.005 µg/mL) olarak tespit edilmiştir. Bu sonuçlar C. glomerata ve Mougeotia sp.’nin beslenme, farmasötik ve kozmetik ürünler için kullanılabileceğini göstermektedir.

BIOCHEMICAL COMPOSITIONS OF Cladophora glomerata (LINNAEUS) KÜTZING AND Mougeotıa sp. SPECIES COLLECTED IN BULK FROM NATURAL FRESHWATER ENVIRONMENTS

Freshwater algae are important sources of bioactive substances in aquatic ecosystems. These secondary metabolites are used in the cosmetics, food and pharmaceutical industries. Cladophora glomerata (Linnaeus) Kützing and Mougeotia sp. are common filamentous macroalgae in freshwater and are the habitat and food source for many organisms. The aim of this study is to determine the pigment, protein, carbohydrate, lipid and ash ratios of two macroalgae C. glomerata and Mougeotia sp. grown in natural habitat and to use the natural environment as a platform to produce biomass. Biochemical analysis of C. glomerata and Mougeotia sp. (% dry weight): protein (14.26 % and 6.15 %), carbohydrate (64.52 % and 70.91 %), lipid (0.55 % and 1.00 %) and ash (20.73% and 18.74 %) were determined respectively. The total amount of chlorophyll (9.06 ±0.07 μg/mL) and total carotene amount (756.4 ±0.05 μg/mL) of C. glomerata were measured. Total amount of chlorophyll (2.18 ±0.17 μg/mL) and total carotene amount (196.4 ±0.005 μg/mL) of Mougeotia sp. were determined. These results suggest that C. glomerata and Mougeotia sp. may be used for nutritional, pharmaceutical and cosmetic products.

Kaynakça

Akköz, C., Arslan, D., Unver, A., Ozcan, M.M., Yılmaz, B. (2009). Chemical composition and mineral content of Enteromorpha intestinalis and Cladophora glomerata Kütz. Seaweeds. Journal of Food Biochemistry, 35(2), 513-523.

AOAC (1990). Official methods of analysis of the association of official analytical chemists. 771p. Retrieved from https://law.resource.org/pub/us/cfr/ibr/002/aoac. methods.1.1990.pdf (accessed 10.08.18)

Bellinger, E.G., Sigee, D.C. (2015). Freshwater Algae: Identification and use as bioindicators. 285p. Retrieved from https://leseprobe.buch.de/imagesadb/7a/42/7a42da49-fec0-415d-b57f30666d6a110b.pdf (accessed 11.05.17)

Bharadwaj, M., Shrivastava, A.K., Shrivastava, R. (2014a). Phycochemical analysis of two members of order Zygnematales. International Journal of Geology, Agriculture and Environmental Sciences, 2(2), 27-30.

Bharadwaj, M., Shrivastava, A.K., Shrivastava, R. (2014b). Phycochemical and antimicrobial study of vigorous freshwater alga Mougeotia. International Journal of Current Microbiology and Applied Science, 3(4), 1020- 1024.

Cirik, Ş., Cirik, S. (2011). Su Bitkileri I-Deniz Bitkilerinin Biyolojisi, Ekolojisi ve Yetiştirme Teknikleri. İzmir: Ege Üniversitesi Su Ürünleri Fakültesi Yayınları, s. 1- 17, ISBN 9789754834178

Çetingül, V., Aysel, V., Kurumlu, Y. (2000). Ege Denizi (Türkiye) sahillerinde yayılış gösteren Cladophora dalmatica Kütz. ve Ceramium ciliatum (Ellis) Ducl. var. robustum (J.Ag.)’un biyokimyası ve ağır metal içeriği. Turkish Journal of Marine Science, 6(1), 9-22.

Dawczynski, C., Schubert, R., Jahreis, G. (2007). Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chemistry, 103, 891-899.

Demirel, G., Özpınar, H. (2003). Yosunlar ve hayvan beslemede kullanımları. Uludağ University Journal of Faculty of Veterinary Medicine, 22(1-2-3), 103-108.

Dodds, W.K., Gudder, D.A. (1992). The ecology of Cladophora. Journal of Phycology, 28(4), 415-427.

El-Swaify, Z.A. (2017). Phytochemical studies on Cladophora species from the Nil River Edges, Egypt. International Journal of Chemical Science, 1(2), 13-22.

Fabrowska, J., Łęska, B., Schroeder, G. (2015). Freshwater Cladophora glomerata as a new potential cosmetic raw material. CHEMIK, 69(8), 491-497.

Ge, S., Madill, M., Champagne, P. (2018). Use of fresh water macroalgae Spirogyra sp. for the treatment of municipal wastewaters and biomass production for biofuel applications. Biomass and Bioenergy, 111, 213-223.

Giordano, P., Scicchitano, P., Locorotondo, M., Mandurino, C., Ricci, G., Carbonara, S., Gesualdo, M., Zito, A., Dachille, A., Caputo, P., Riccardi, R., Frasso, G., Lassandro, G., Di Mauro, A., Ciccone, M.M. (2012). Carotenoids and cardiovascular risk. Current Pharmaceutical Desing, 18, 5577-5589.

Gönülol, A. (2017). Turkishalgae electronic publication. Retrieved from http://turkiyealgleri.omu.edu.tr (accessed 12.12.18)

Gündoğan, Y., Gül, A., Çakır Arıca, Ş., Çavuşoğlu, K. (2005). Cladophora glomerata (Chlorophyce)’da ağır metal birikiminin araştırılması. Afyon Kocatepe Üniversitesi Fen Bilimleri Dergisi, 8(1), 181-194.

Hasni, S. (2007). Phycochemical Studies on Some Fresh Water Green Algae of Karachi. India: University of Karachi, p. 12-25.

Hosikian, A., Lim, S., Halim, R., Danquah, M.K. (2010). Chlorophyll extraction from microalgae: a review on the process engineering aspects. International Journal of Chemical Engineering, 39, 32-43.

Huber–Pestalozzi, G. (1982). Das Phytoplankton Des Süβwassers, 8. Teil Conjugatophyceae, Zynematales and Desmidiales, E. Schweizerbart’sche Verlagsbuchhandlung. Stuttgart: E Schweizerbart'sche Verlagsbuchhandlung. p. 25-47.

Huber-Pestalozzi, P., Huber-Pestalozzi, G., Förster, K., Med, G. (1982). Das Phytoplankton des SuBwassers: section 8 pt 1, Conjugatophyceae Zygnematales und Desmidiales (excl. Zygnemataceae). Stuttgart: E Schweizerbart'sche Verlagsbuchhandlung. p. 30-55.

John, D.M., Whitton, B.A., Brook, A.J. (2002). The freshwater algae of the British Isles: an identification guide to freshwater and terrestrial algae. Cambridge: Cambridge University Press., 697p.

Khuantrairong, T., Traichaiyaprn, S. (2011). The nutritional value of edible freshwater alga Cladophora sp. (Chlorophyta) grown under different phosphorus concentrations. International Journal of Agriculture and Biology, 13, 297-300.

Lichtenthaler, H.K., Wellburn, A.R. (1985). Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biochemical Society Transactions, 11, 591-592.

Masojidek, J., Torzillo, G., Koblizek, M. (2013). Photosynthesis in Microalgae. In: A. Richmond & Q. Hu (Eds.), Handbook of Microalgal Culture: Applied Phycology and Biotechnology (p. 21-36). London, UK: John Wiley & Sons, Ltd. Published by Blackwell Publishing Ltd.

Messyasz, B., Leska, B., Fabrowska, J., Pikosz, M., Roj, E., Cieslak, A., Schroeder, G. (2015). Biomass of freshwater Cladophora as a raw material for agriculture and the cosmetic industry. Open Chemistry, 13, 1108-1118.

Mitova, M.I., Usovb, A.I., Bilanb, M.I., Stefanov, K.L., Dimitrova-Konaklievac, S.D., Tonovc, D.P., Popov, S.S. (1999). Sterols and polysaccharides in freshwater algae Spirogyra and Mougeotia. Zeitschrift für Naturforschung, 54, 1016-1020.

Muntean, E., Bercea, V., Dragos, N., Muntean, N. (2007). Potential use of Mougeotia sp. algae in food production, based on its carotenoid. Journal of Agroalimentary Processes and Technologies, 8(1), 143-148.

Naw, M.W.D., Win, S.S. (2011). Morphology and nutritional values of green alga Cladophora from Kachin State. Universities Research Journal, 4(1), 99-111.

Prescott, G.W. (1951). Algae of the western great lakes area. Michigan: Cranbrook Institute of Science, Bloomfield Hills, 977p.

Ramaraj, R., Tsai, D.D.W., Chen, P.H. (2013). Chlorophyll is not accurate measurement for algal biomass. Chiang Mai Journal of Science, 40, 547-555.

Ramaraj, R., Tsai, D.D.W., Chen, P.H. (2014). An exploration of the relationships between microalgae biomass growth and related environmental variables. Journal of Photochemistry and Photobiology B, 135, 44-47.

Ryan, W.H., Senthil, C., Ashish, B., Das, K.C. (2010). Effect of biochemical stimulants on biomass productivity and metabolite content of the microalga, Chlorella sorokiniana. Applied Biochemistry and Biotechnology, 162, 2400-2414.

Tipnee, S., Ramaraj, R., Unpaprom, Y. (2015). Nutritional evaluation of edible freshwater gren macroalga Spirogyra varians. Emergent Life Sciences Research, 1(2), 1-7.

Wijesekara, I., Pangestuti, R., Kim, S.K. (2011). Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydrate Polymers, 84, 14-21.

Wongsawad, P., Peerapornpisal, Y. (2015). Morphological and molecular profiling of Spirogyra from Northeastern and northern Thailand using inter simple sequence repeat (ISSR) markers. Saudi Journal of Biological Sciences, 22(4), 382-389.

Kaynak Göster