Klinik Örneklerden İzole Edilen Corynebacterium striatum Suşlarının İn-Vitro Antibiyotik Direnç Profili

Corynebacterium striatum insan deri ve mukozasının normal flora elemanı olan bir bakteridir. Ancak son yıllarda invaziv infeksiyon ve salgın etkeni olarak bildirilmektedir. Yanı sıra, bakterinin çoklu ilaç dirençli olması da önemli bir sorundur. Bu çalışmada, C.striatum suşlarının antimikrobiyal direnç profilini belirleyerek hastanemizdeki ampirik tedavi protokollerine katkıda bulunulması amaçlanmıştır. Ocak 2017-Aralık 2018 tarihleri arasında yatan hastalardan izole edilen toplam 235 C.striatum suşunun antibiyotik duyarlılık sonuçları retrospektif olarak incelenmiştir. İzolatların identifikasyonu BD Phoenix-100 (Becton Dickinson, MD, ABD) tam otomatize sistemle, antibiyotik duyarlılıkları ise Kirby-Bauer disk difüzyon yöntemi ile belirlenmiştir. İzolatların antibiyotik duyarlılıkları European Committe on Antimicrobial Susceptibility Testing standartlarına göre değerlendirilmiştir. Suşların izole edildiği toplam 235 hastanın 114’ü kadın, 121’i erkektir. Yaş ortalaması 72 olup hastaların 165’i (% 70) geriatrik yaş grubundadır (65 yaş ve üzeri). C.striatum suşlarının % 71’i yoğun bakım ünitelerinden elde edilmiştir. Bölümlere göre ise suşlar en sık cerrahi yoğun bakım (% 27), dahili yoğun bakım (% 26) ve palyatif bakım ünitesinden (% 14) izole edilmiştir. Suşların % 41’i solunum yolu örnekleri, % 32’si kan ve % 27’si yara örneklerinden elde edilmiştir. İzolatların tümü vankomisin ve linezolide duyarlı bulunmuştur. Ancak gentamisine % 37, eritromisine % 55 oranında direnç saptanmıştır. Klindamisin, tetrasiklin siprofloksasin ve sefotaksim direnç oranları oldukça yüksek olup, sırasıyla % 87, % 93, % 94 ve % 96 idi. Çalışma sonuçlarımıza göre C.striatum enfeksiyonlarında tedavi seçenekleri kısıtlıdır. Bu nedenle ampirik antibiyotik tedavisinde vankomisin veya linezolid tercih edilebilir

In-vitro Antibiotic Resistance Profile of Corynebacterium striatum Strains Isolated From Clinical Samples

Corynebacterium striatum is a normal inhabitant of human skin and mucous membranes. However, it has recently been reported as the cause of invasive infections and outbreaks. In addition, multidrug resistance of the bacterium is a significant concern. In this study, we aimed to determine the antimicrobial resistance of C.striatum strains to contribute to empirical antibiotic usage protocols. A total of 235 C.striatum strains isolated from inpatients between January 2017-December 2018 were investigated retrospectively. The strains were identified using the Phoenix 100 (Becton Dickinson, MD, USA) fully automated system and antibiotic susceptibilities of isolates was determined by using Kirby-Bauer disc diffusion method. Antimicrobial susceptibilities of strains were interpreted according to The European Committee on Antimicrobial Susceptibility Testing standards. Of the 235 patients in whom strains were isolated, 114 were female and 121 were male. The mean age was 72 years and 70 % (n=165) of the patients were in the geriatric age group (65 years, and older). C.striatum strains were isolated from intensive care units at a rate of 71 %. The strains were mostly isolated from the surgical intensive care unit (27 %) internal intensive care unit (26 %) and palliative care unit (14 %). C.striatum strains obtained from the respiratory tract samples (41 %), blood (32 %), and wound samples (27 %). All strains were susceptible to vancomycin and linezolid. However, the resistance rate to gentamicin was 37 % and for erythromycin, it was 55 %. The resistance rates to clindamycin, tetracycline, ciprofloxacin, and cefotaxime were extremely high at 87 %, 93 %, 94 %, and 96 %, respectively. According to our study results, treatment options for C.striatum infections are limited. Therefore vancomycin or linezolid can be preferred in empirical antibiotic treatment.

Kaynakça

1. Alibi S, Ferjani A, Boukadida J, Cano ME, FernándezMartínez M, Martínez-Martínez L et al. Occurrence of Corynebacterium striatum as an emerging antibiotic-resistant nosocomial pathogen in a Tunisian hospital. Sci Rep. 2017;(7):1-8. https://doi.org/10.1038/s41598-017-10081-y

2. Barberis CM, Sandoval E, Rodriguez CH et al. Comparison between disk diffusion and agar dilution methods to determine in vitro susceptibility of Corynebacterium spp. clinical isolates and update of their susceptibility. J Glob Antimicrob Resist. 2018;14(9):246-52. https://doi.org/10.1016/j.jgar.2018.05.009

3. Bernard K. The genus Corynebacterium and other medically relevant coryneform-like bacteria. J Clin Microbiol. 2012; 50(10):3152-8. https://doi.org/10.1128/JCM.00796-12

4. Campanile F, Carretto E, Barbarini D, Grigis A, Falcone M, Goglio A. et al. Clonal multidrug-resistant Corynebacterium striatum strains, Italy. Emerg Infect Dis. 2009;15(1):75-8. https://doi.org/10.3201/eid1501.080804

5. Collada JM, Nieto AR, de Bustamante Ussia, MD., Criado AB. Septic arthritis in a native knee due to Corynebacterium striatum. Rheumatología Clínica. 2018;14(5):301-2. https://doi.org/10.1016/j.reuma.2017.01.013

6. Çaycı Y, Korkmaz F, Birinci A. Hastanemizde 2014- 2017 yıllarında üreyen Corynebacterium izolatlarının değerlendirilmesi. Kocaeli Üniversitesi Sağlık Bilimleri Derg. 2017;3(2):6-8. https://doi.org/10.30934/kusbed.319802

7. Hagiya H, Kimura K, Okuna H et.al. Bacteremia due to high-level daptomycin-resistant Corynebacterium striatum: a case report with genetic investigation. J Infect Chemother. 2019;25(11):906-8. https://doi.org/10.1016/j.jiac.2019.04.009

8. Hahn WO, Werth BJ, Butler-Wu SM, Rakita RM. Multidrug-resistant Corynebacterium striatumassociated with increased use of parenteral antimicrobial drugs. Emerg Infect Dis. 2016;22(11): 1908-14. https://doi.org/10.3201/eid2211.160141

9. Hong HL, Koh HI, Lee AJ. Native Valve Endocarditis due to Corynebacterium striatum confirmed by 16S ribosomal RNA sequencing: a case report and literature review. Infect Chemother. 2016;48(3):239- 45. https://doi.org/10.3947/ic.2016.48.3.239

10. Ishiwada N, Watanabe M, Murata S, Takeuchi N, Taniguchi T, Igari H. Clinical and bacteriological analyses of bacteremia due to Corynebacterium striatum. J Infect Chemother. 2016;22(12):790-3. https://doi.org/10.1016/j.jiac.2016.08.009

11. Lee PP, Ferguson DA, Sarubbi FA. Corynebacterium striatum: an underappreciated community and nosocomial pathogen. J Infect. 2005;50(4):338-43. https://doi.org/10.1016/j.jinf.2004.05.005

12. McMullen AR, Anderson N, Wallace MA, Shupe A, Burnham CA. When good bugs go bad: epidemiology and antimicrobial resistance profiles of Corynebacterium striatum, an emerging multidrugresistant, opportunistic pathogen. Antimicrob Agents Chemother. 2017;61(11):e01111-17. https://doi.org/10.1128/AAC.01111-17

13. Mumcuoğlu İ, Hazırolan G, Kurşun Ş, Aksu N (2015). Bir eğitim ve araştırma hastanesinde artan sıklıkta izole edilen Corynebacterium striatum izolatlarının değerlendirilmesi. Turk Hij Den Biyol Derg. 2015;72(4):281-8. https://doi.org/10.5505/TurkHijyen.2015.65668

14. Neemuchwala A, Soares D, Ravirajan V, MarchandAustin A, Kus JV, Patel SN. In vitro antibiotic susceptibility pattern of non-diphtheriae corynebacterium isolates in Ontario, Canada, from 2011 to 2016. Antimicrob Agents Chemother. 2018;62(4):e01776-17. https://doi.org/10.1128/AAC.01776-17

15. Olender A. Mechanisms of Antibiotic Resistance in Corynebacterium spp. Causing Infections in People, “Pana M (eds). Antibiotic resistant bacteria. A continuous challenge in the new millennium 1. baskı” kitabında s.387-402, InTech Open, London (2012). https://doi.org/10.5772/29418

16. Ortiz-Pérez A, Martín-De-Hijas NZ, Esteban J, Fernández-Natal MI, García-Cía JI, Fernández-Roblas R (2010) High frequency of macrolide resistance mechanisms in clinical isolates of Corynebacterium species. Microb Drug Resist. 2010;16 (4):273-7. https://doi.org/10.1089/mdr.2010.0032

17. Otsuka Y, Ohkusu K, Kawamura Y, Baba S, Ezaki T, Kimura S. Emergence of multidrug-resistant Corynebacterium striatum as nosocomial pathogen in long-term hospitalized patients with underlying diseases. Diagn Microbiol Infect Dis. 2006;54(2):109- 14. https://doi.org/10.1016/j.diagmicrobio.2005.08.005

18. Renom F, Gomila M, Garau M, et al. Respiratory infection by Corynebacterium striatum: epidemiological and clinical determinants. New Microbes New Infect. 2014; 2(4):106-14. https://doi.org/10.1002/nmi2.48

19. Suh, JW, Ju Y, Lee CK, Sohn JW, Kim MJ, Yoon YK. Molecular epidemiology and clinical significance of Corynebacterium striatum isolated from clinical specimens. Infect Drug Resist. 2019;4(12):161-71. https://doi.org/ 10.2147/IDR.S184518

20. The European Committee on Antimicrobial Susceptibility Testing Breakpoint tables for interpretation of MICs and zone diameters Version 7.0. Available at:http://www.eucast.org/ast_of_ bacteria/previous_versions_of_documents/(erişim tarihi:04.07.2019)

21. The European Committee on Antimicrobial Susceptibility Testing Breakpoint tables for interpretation of MICs and zone diameters Version 8.0. Available at: http://www.eucast.org/ast of bacteria/previous version sof_documents/ (erişim tarihi 15.07.2019)

22. Verroken A, Bauraing C, Deplano A, Bogaerts P, Huang D, Wauters G, Glupczynski Y Epidemiological investigation of a nosocomial outbreak of multidrugresistant Corynebacterium striatum at one Belgian university hospital. Clin Microbiol Infect. 2014; 20(1):44-50. https://doi.org/10.1111/1469-0691.12197

23. Weis K, Labbe AC, Laverdiere M.Corynebacterium striatum meningitis (case report and review of an increasing important Corynebacterium species). Clin Infect Dis.1996;23(6):1246-8. https://doi.org/10.1093/clinids/23.6.1246

Kaynak Göster