Spermatogenez, spermiyogenezis ve klinik yansımaları

Spermatogenez, birçok hormonal ve parakrin faktörle düzenlenen, dinamik bir süreçtir. Bu süreç, otokrin, parakrin ve endokrin etkenlerin güdümünde ve aşamalı bir süreçtir ve gonadotropinlerin etkisi altındadır. Hareketli spermatozoanın meydana geldiği spermiyogenez ise, spermatogenezin nihai basamağıdır. Bu basamakta, Sertoli hücrelerinin önemli bir düzenleyicisi olduğu, hücre-iskeleti yapısı önemlidir. Sertoli hücreleri, germ hücrelerinin gelişimi için destekleyici ortamı sağlarlar ve dinamik bir hücre iskeletine sahiptirler. Gonadotropinler, testosteron, östrojen ve büyüme hormonunun spermatogenezde önemli rolleri vardır ve bunların yokluğunda önemli defektler görülebilmektedir. İnfertilite, yaygın görülen ve çiftlerde önemli psikososyal problemlere neden olan bir problemdir. Azoospermi, erkek faktörünün yaklaşık %10’undan sorumludur ve bu durumda hormonal tedavinin başarısı sınırlıdır. Bu tedavilerle hedeflenen sonuç, immatür germ hücrelerini, oositi döllemeye yetkin olgun hücreler haline getirmektir. Bu kapsamda, gonadotropinlerin etki mekanizmalarının ve Leydig-Sertoli hücreleri ve germ hücreleri arasındaki etkileşimin aydınlatılması, kritik öneme sahiptir. Spermatogenez basamaklarında rol oynayan lokal ve sistemik faktörlerin daha iyi anlaşılmasıyla ve genetik bazlı farklılıkların ortaya çıkartılmasıyla immatür germ hücrelerinin olgun hücreler haline getirilmesi yoluyla infertilite tedavisinde yeni ufuklar açılabilir.

Spermatogenesis, spermiogenesis and clinical reflections

Spermatogenesis is a dynamic process which is managed with various hormonal and paracrine factors. Spermatogenesis is a stepwise process guided by autocrine, paracrine and endocrine factors and is under the influence of gonadotropins. The spermiogenesis, in which the motil spermatozoa occur, is the final step of spermatogenesis. In this step, the cell-skeleton structure, in which the Sertoli cells are important regulators, is fundamental. Sertoli cells provide a supportive environment for the development of germ cells and have a dynamic cytoskeleton. Gonadotropins, testosterone, estrogen and growth hormone have important roles in spermatogenesis and considerable defects may be considered in the absence of these. Infertility is a common problem that causes significant psychosocial challenges in couples. Azoospermia is responsible for approximately 10% of the male factor and the success of hormonal therapy is limited in this case. The targeted result with these treatments is to transform immature germ cells into mature cells capable of fertilizing oocytes. In this context, the mechanisms of action of gonadotropins and the clarification of the interaction between LeydigSertoli cells and germ cells are critical. With the better understanding of local and systemic factors involved in the spermatogenesis steps and by revealing genetic-based differences, new horizons may be opened in infertility treatment by transforming immature germ cells into mature cells.

___

  • 1. Cao XW, Lin K, Li CY, Yuan CW. [A review of WHO Laboratory Manual for the Examination and Processing of Human Semen (5th edition)]. Zhonghua Nan Ke Xue 2011;17:1059–63.
  • 2. Kumar N, Singh AK. Trends of male factor infertility, an important cause of infertility: A review of literature. J Hum Reprod Sci 2015;8:191–6. [CrossRef]
  • 3. Schlegel PN. Testicular sperm extraction: microdissection improves sperm yield with minimal tissue excision. Hum Reprod 1999;14:131–5. [CrossRef]
  • 4. Shiraishi K. Hormonal therapy for non-obstructive azoospermia: basic and clinical perspectives. Reprod Med Biol 2015;14:65–72. [CrossRef]
  • 5. Mruk DD, Cheng CY. The Mammalian Blood-Testis Barrier: Its Biology and Regulation. Endocr Rev 2015;36:564–91. [CrossRef]
  • 6. Amann RP. The cycle of the seminiferous epithelium in humans: a need to revisit? J Androl 2008;29:469–87. [CrossRef]
  • 7. Griswold MD. The central role of Sertoli cells in spermatogenesis. Semin Cell Dev Biol 1998;9:411–6. [CrossRef]
  • 8. Sharpe RM. Sperm counts and fertility in men: a rocky road ahead. Science & Society Series on Sex and Science. EMBO Rep 2012;13:398–403. [CrossRef]
  • 9. Sharpe RM, McKinnell C, Kivlin C, Fisher JS. Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction 2003;125:769–84. [CrossRef]
  • 10. Ehmcke J, Hubner K, Scholer HR, Schlatt S. Spermatogonia: origin, physiology and prospects for conservation and manipulation of the male germ line. Reprod Fertil Dev 2006;18:7–12. [CrossRef]
  • 11. Jan SZ, Hamer G, Repping S, de Rooij DG, van Pelt AM, Vormer TL. Molecular control of rodent spermatogenesis. Biochim Biophys Acta 2012;1822:1838–50. [CrossRef]
  • 12. Zhou Q, Wang M, Yuan Y, Wang X, Fu R, Wan H, et al. Complete Meiosis from Embryonic Stem Cell-Derived Germ Cells In Vitro. Cell Stem Cell 2016;18:330–40. [CrossRef]
  • 13. Sharma S, Hanukoglu A, Hanukoglu I. Localization of epithelial sodium channel (ENaC) and CFTR in the germinal epithelium of the testis, Sertoli cells, and spermatozoa. J Mol Histol 2018;49:195–208. [CrossRef]
  • 14. Song N, Liu J, An S, Nishino T, Hishikawa Y, Koji T. Immunohistochemical Analysis of Histone H3 Modifications in Germ Cells during Mouse Spermatogenesis. Acta Histochem Cytochem 2011;44:183–90. [CrossRef]
  • 15. Griswold MD. Spermatogenesis: The Commitment to Meiosis. Physiol Rev 2016;96:1–17. [CrossRef]
  • 16. Kimura M, Takagi S, Nakashima S. Aurora A regulates the architecture of the Golgi apparatus. Exp Cell Res 2018;367:73–80. [CrossRef]
  • 17. Muciaccia B, Boitani C, Berloco BP, Nudo F, Spadetta G, Stefanini M, et al. Novel stage classification of human spermatogenesis based on acrosome development. Biol Reprod 2013;89:60. [CrossRef]
  • 18. Elkis Y, Bel S, Rahimi R, Lerer-Goldstein T, Levin-Zaidman S, Babushkin T, et al. TMF/ARA160 Governs the Dynamic Spatial Orientation of the Golgi Apparatus during Sperm Development. PLoS One 2015;10:e0145277. [CrossRef]
  • 19. Vogl AW. Distribution and function of organized concentrations of actin filaments in mammalian spermatogenic cells and Sertoli cells. Int Rev Cytol 1989;119:1–56. [CrossRef]
  • 20. Moreno RD, Palomino J, Schatten G. Assembly of spermatid acrosome depends on microtubule organization during mammalian spermiogenesis. Dev Biol 2006;293:218–27. [CrossRef]
  • 21. Shen J, Chen W, Shao B, Qi Y, Xia Z, Wang F, et al. Lamin A/C proteins in the spermatid acroplaxome are essential in mouse spermiogenesis. Reproduction 2014;148:479–87. [CrossRef]
  • 22. Lehti MS, Sironen A. Formation and function of the manchette and flagellum during spermatogenesis. Reproduction 2016;151:R43– 54. [CrossRef]
  • 23. O’Donnell L, Rhodes D, Smith SJ, Merriner DJ, Clark BJ, Borg C, et al. An essential role for katanin p80 and microtubule severing in male gamete production. PLoS Genet 2012;8:e1002698. [CrossRef]
  • 24. Dunleavy JEM, Okuda H, O’Connor AE, Merriner DJ, O’Donnell L, Jamsai D, et al. Katanin-like 2(KATNAL2) functions in multiple aspects of haploid male germ cell development in the mouse. PLoS Genet 2017;13:e1007078. [CrossRef]
  • 25. Kierszenbaum AL, Tres LL. The acrosome-acroplaxome-manchette complex and the shaping of the spermatid head. Arch Histol Cytol 2004;67:271–84. [CrossRef]
  • 26. Yoshinaga K, Toshimori K. Organization and modifications of sperm acrosomal molecules during spermatogenesis and epididymal maturation. Microsc Res Tech 2003;61:39–45. [CrossRef]
  • 27. Silva FR, Leite LD, Wassermann GF. Rapid signal transduction in Sertoli cells. Eur J Endocrinol 2002;147:425–33. [CrossRef]
  • 28. Crisostomo L, Alves MG, Gorga A, Sousa M, Riera MF, Galardo MN, et al. Molecular Mechanisms and Signaling Pathways Involved in the Nutritional Support of Spermatogenesis by Sertoli Cells. In: Alves M., Oliveira P. (eds) Sertoli Cells. Methods in Molecular Biology, vol 1748. Humana Press, New York, NY; 2018. [CrossRef]
  • 29. Shiraishi K, Matsuyama H. Gonadotoropin actions on spermatogenesis and hormonal therapies for spermatogenic disorders [Review]. Endocr J 2017;64:123–31. [CrossRef]
  • 30. Welsh M, Saunders PT, Atanassova N, Sharpe RM, Smith LB. Androgen action via testicular peritubular myoid cells is essential for male fertility. FASEB J 2009;23:4218–30. [CrossRef]
  • 31. Abel MH, Baker PJ, Charlton HM, Monteiro A, Verhoeven G, De Gendt K, et al. Spermatogenesis and sertoli cell activity in mice lacking sertoli cell receptors for follicle-stimulating hormone and androgen. Endocrinology 2008;149:3279–85. [CrossRef]
  • 32. Clermont Y, Perey B. Quantitative study of the cell population of the seminiferous tubules in immature rats. Am J Anat 1957;100:241–67. [CrossRef]
  • 33. Dunleavy JEM, O’Bryan M, Stanton PG, O’Donnell L. The Cytoskeleton in Spermatogenesis. Reproduction 2019;157:R53– 72. [CrossRef]
  • 34. Franca LR, Hess RA, Dufour JM, Hofmann MC, Griswold MD. The Sertoli cell: one hundred fifty years of beauty and plasticity. Andrology 2016;4:189–212. [CrossRef]
  • 35. Alves MG, Rato L, Carvalho RA, Moreira PI, Socorro S, Oliveira PF. Hormonal control of Sertoli cell metabolism regulates spermatogenesis. Cell Mol Life Sci 2013;70:777–93. [CrossRef]
  • 36. Luca G, Baroni T, Arato I, Hansen BC, Cameron DF, Calafiore R. Role of Sertoli Cell Proteins in Immunomodulation. Protein Pept Lett 2018;25:440–5. [CrossRef]
  • 37. Vogl W, Lyon K, Adams A, Piva M, Nassour V. The endoplasmic reticulum, calcium signaling and junction turnover in Sertoli cells. Reproduction 2018;155:R93-R104. [CrossRef]
  • 38. Mital P, Hinton BT, Dufour JM. The blood-testis and bloodepididymis barriers are more than just their tight junctions. Biol Reprod 2011;84:851–8. [CrossRef]
  • 39. Kaur G, Thompson LA, Dufour JM. Sertoli cells –immunological sentinels of spermatogenesis. Semin Cell Dev Biol 2014;30:36–44. [CrossRef]
  • 40. Amlani S, Vogl AW. Changes in the distribution of microtubules and intermediate filaments in mammalian Sertoli cells during spermatogenesis. Anat Rec 1988;220:143–60. [CrossRef]
  • 41. Vogl AW, Vaid KS, Guttman JA. The Sertoli cell cytoskeleton. Adv Exp Med Biol 2008;636:186–211. [CrossRef]
  • 42. Peters JM, Colavin A, Shi H, Czarny TL, Larson MH, Wong S, et al. A Comprehensive, CRISPR-based Functional Analysis of Essential Genes in Bacteria. Cell 2016;165:1493–506. [CrossRef]
  • 43. Corradi PF, Corradi RB, Greene LW. Physiology of the Hypothalamic Pituitary Gonadal Axis in the Male. Urol Clin North Am 2016;43:151–62. [CrossRef]
  • 44. Tatem AJ, Beilan J, Kovac JR, Lipshultz LI. Management of Anabolic Steroid-Induced Infertility: Novel Strategies for Fertility Maintenance and Recovery. World J Mens Health 2019;37:e16. [CrossRef]
  • 45. Wen Q, Cheng CY, Liu YX. Development, function and fate of fetal Leydig cells. Semin Cell Dev Biol 2016;59:89–98. [CrossRef]
  • 46. McLachlan RI, O’Donnell L, Meachem SJ, Stanton PG, de Kretser DM, Pratis K, Robertson DM. Identification of specific sites of hormonal regulation in spermatogenesis in rats, monkeys, and man. Recent Prog Horm Res 2002;57:149–79. [CrossRef]
  • 47. Singh J, O’Neill C, Handelsman DJ. Induction of spermatogenesis by androgens in gonadotropin-deficient (hpg) mice. Endocrinology 1995;136:5311–21. [CrossRef]
  • 48. Allan CM, Garcia A, Spaliviero J, Zhang FP, Jimenez M, Huhtaniemi I, Handelsman DJ. Complete Sertoli cell proliferation induced by follicle-stimulating hormone (FSH) independently of luteinizing hormone activity: evidence from genetic models of isolated FSH action. Endocrinology 2004;145:1587–93. [CrossRef]
  • 49. Matthiesson KL, McLachlan RI, O’Donnell L, Frydenberg M, Robertson DM, Stanton PG, Meachem SJ. The relative roles of follicle-stimulating hormone and luteinizing hormone in maintaining spermatogonial maturation and spermiation in normal men. J Clin Endocrinol Metab 2006;91:3962–9.
  • 50. Haywood M, Spaliviero J, Jimemez M, King NJ, Handelsman DJ, Allan CM. Sertoli and germ cell development in hypogonadal (hpg) mice expressing transgenic follicle-stimulating hormone alone or in combination with testosterone. Endocrinology 2003;144:509–17. [CrossRef]
  • 51. Holdcraft RW, Braun RE. Hormonal regulation of spermatogenesis. Int J Androl 2004;27:335–42. [CrossRef]
  • 52. Ruwanpura SM, McLachlan RI, Meachem SJ. Hormonal regulation of male germ cell development. J Endocrinol 2010;205:117–31. [CrossRef]
  • 53. Griffin DK, Ellis PJ, Dunmore B, Bauer J, Abel MH, Affara NA. Transcriptional profiling of luteinizing hormone receptor-deficient mice before and after testosterone treatment provides insight into the hormonal control of postnatal testicular development and Leydig cell differentiation. Biol Reprod 2010;82:1139–50. [CrossRef]
  • 54. Huhtaniemi I. A short evolutionary history of FSH-stimulated spermatogenesis. Hormones (Athens) 2015;14:468–78. [CrossRef]
  • 55. Nieschlag E, Simoni M, Gromoll J, Weinbauer GF. Role of FSH in the regulation of spermatogenesis: clinical aspects. Clin Endocrinol (Oxf) 1999;51:139–46. [CrossRef]
  • 56. Kato Y, Shiraishi K, Matsuyama H. Expression of testicular androgen receptor in non-obstructive azoospermia and its change after hormonal therapy. Andrology 2014;2:734–40. [CrossRef]
  • 57. de Kretser DM, Loveland KL, Meinhardt A, Simorangkir D, Wreford N. Spermatogenesis. Hum Reprod 1998;13 Suppl 1:1–8. [CrossRef]
  • 58. Schulster M, Bernie AM, Ramasamy R. The role of estradiol in male reproductive function. Asian J Androl 2016;18:435–40. [CrossRef]
  • 59. Wagner MS, Wajner SM, Maia AL. The role of thyroid hormone in testicular development and function. J Endocrinol 2008;199:351– 65. [CrossRef]
  • 60. Gandhi J, Hernandez RJ, Chen A, Smith NL, Sheynkin YR, Joshi G, Khan SA. Impaired hypothalamic-pituitary-testicular axis activity, spermatogenesis, and sperm function promote infertility in males with lead poisoning. Zygote 2017;25:103–10. [CrossRef]
  • 61. Simoni M, Santi D, Negri L, Hoffmann I, Muratori M, Baldi E, et al. Treatment with human, recombinant FSH improves sperm DNA fragmentation in idiopathic infertile men depending on the FSH receptor polymorphism p. N680S. a pharmacogenetic study. Hum Reprod 2016;31:1960–9. [CrossRef]
  • 62. Selice R, Garolla A, Pengo M, Caretta N, Ferlin A, Foresta C. The response to FSH treatment in oligozoospermic men depends on FSH receptor gene polymorphisms. Int J Androl 2011;34:306–12. [CrossRef]