Dicranum scoparium ve Porella platyphylla taxonlarının biyokimyasal bileşiklerinin serbest radikal temizleme faaliyetleri

Ülkemizde briyofitler ile ilgili olan çalışmalar genellikle briyofloristik amaçlı olup serbest radikal temizleme aktiviteleri ve yağ asidi içerikleri gibi diğer amaçlı çalışmalar yok denecek kadar azdır. Serbest radikal temizleme aktiviteleri ve yağ asidi içeriklerini belirlemek adına yaptığımız bu çalışmada, briyofitlere ait Dicranum scoparium ve Porella platyphylla taksonları kullanılmıştır. Bu çalışmada bryofitlerin bilim dünyasındaki önemine bir ivme kazandırmak ve bu konuda ileride yapılacak diğer çalışmalara temel oluşturulması amaçlanmıştır. Çalışmamızda elde edilen verilerde Dicranum scoparium türünün DPPH radikal temizleme etkisinin P. platyphylla türüne göre belirgin düzeyde fazla olduğu gözlenmiştir. Bitki ekstraktları içeriğindeki polifenolik bileşiklerin düzeyi ile DPPH radikalini temizleme etkinliği arasında güçlü bir ilişki bulunduğu bilinmektedir. Yağ asidi içerikleri incelendiğinde ise α-Linolenik asit dışındaki bütün yağ asitlerinin P. platyphylla türünde D. scoparium türüne göre fazla olduğu gözlenmiştir. Vitamin içerikleri karşılaştırıldığında, Porella taksonuna göre Dicranum taksonunda D-3, a-tokoferol, stigmasterol, betasterol miktarının daha yüksek olduğu tespit edildi.

The free radical scavenging activities of biochemical compounds of Dicranum scoparium and Porella platyphylla

The bryophytes studies carried out in our country are mainly for bryofloristic purposes and the studies on biochemical contents are very limited. Dicranum scoparium and Porella platyphylla taxa of bryophytes were used in the present study carried out to determine the free radical scavenging activities, fatty acid, and vitamin contents. In this study, it was aimed to underline the importance of bryophytes for scientific literature and to provide a basis for further studies on this subject. The data obtained in this study indicate that the DPPH radical scavenging effect of D. scoparium taxon is significantly higher than that of P. platyphylla taxon. It is known that there is a strong relationship between the phenolic compound content of methanol extracts of the plants and the DPPH radical scavenging efficiency. When the fatty acid contents were examined, it was observed that levels of all unsaturated fatty acids were higher in the P. platyphylla taxon than the D. scoparium taxon, except for α-Linolenic acid. When the vitamin contents of species were compared, it was determined that D-3, α -tocopherol, stigmasterol, betasterol amount was higher in Dicranum taxon.

___

  • Anbalagan V. Raju K. Shanmugam M. 2017. Assessment of lipid peroxidation and antioxidant status in vanillic acid treated 7,12-Dimethylbenz[a] anthracene induced hamster buccal pouch carcinogenesis. Journal of Clinical and Diagnostic Research. 11, 01-04. Anderson W.H. Hawkins J.M. Gellerman J.L. Schlenk H. 1974. Fatty acid composition as criterion in taxonomy of mosses. The Journal of the Hattori Botanical Laboratory. 38, 99-103. Asakawa Y. Ludwiczuk A. Hashimoto T. 2013. Cytological and Antiviral Compounds from Bryophytes and Inedible fungi. Journal of pre-clinical and clinical Research. 7, 73-85.
  • Anderson B. Anderson W.H. Chipault, J.R. Ellison E.C., Fenton, S.W. Gellerman J.L. Hawkins J.M. Schlenk H. 1974. 9,12,15- Octadecatrien-6-ynoic acid: New acetylenic acid from mosses. Lipids. 9, 506-511.
  • AI-Hasan R.H. EI-Saadawi W.E. Ali M.A. Radwan S.S. 1989. Arachidonic and eicosapentaenoic acids in lipids of Bryum bicolor Dicks. Effects of controlled temperature and illumination. Bryologist. 92,178-182.
  • Aydın S. Yılmaz O. Gökce Z. 2011. Effectiveness of matured Morus nigra L. (black mulberry) fruit extract on 2,2-diphenyl-1- picrylhydrazyl (DPPH●) and hydroxyl (OH●) radicals as compared to less matured fruit extract. African Journal of Biotechnology. 10, 16037-16044.
  • Beike A.K. Jaeger C. Zink, F. Decker E.L. Reski R. 2014. High contents of very long-chain polyunsaturated fatty acids in different moss species. Plant Cell Reports. 33, 245- 254.
  • Brand-Williams W. Cuvelier M.E. Berset C. 1995. Use of a free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft & Technologie. 28, 25-30.
  • Cheng X. Xiao Y. Wang X. Wang P. Li H. Yan H. Liu Q. 2012. Anti- tumor and proapoptic activity of ethanolic extract and its various fractions from Polytrichum commune L. Ex Hedw in L1210 cells. Journal of Ethnopharmacology. 143, 49– 56.
  • Christie W.W. 1992. Advances in lipid methodology-one. Oily Press. Scotland.
  • Chobot V. Kubicoval L. Nabbout S. Jahodarand L. Vytlacilova J. 2006. Antioksidant and free radical scavenging activities of five moss species. Fitoterapia. 77, 598-600.
  • Dembitsky V.M. 1993. Lipids of bryophytes. Progress in Lipid Research. 32, 281-356.
  • Dembitsky V.M. Rezanka T. Bychek I.A. Afonina O.M. 1993b. Acetylenic acids and lipid compositions of some mosses from Russia. Phytochemistry. 33, 1021-1027.
  • Dembitsky V.M. Rezanka T. Bychek I.A. Afonina O.M. 1993c. Polar lipid and fatty acid compositions of some bryophytes. Phytochemistry. 33, 1009-1014.
  • Dembitsky V.M. Rezanka T. 1994. Acetylenic acids of the Dicranaceae. Phytochemistry. 36: 685-689.
  • Dey A. De N.J. 2012. Antioxidativepotential of Bryophytes: Stresstoleranceand Commercial Perspectives: A Review Pharmacologia. 3, 151-159.
  • Dianat M. Radmanesh E. Badavi M. Mard S.A. Goudarzi G. 2016. Disturbance effects of PM₁₀ on iNOS and eNOS mRNA expression levels and antioxidant activity induced by ischemia-reperfusion injury in isolated rat heart: protective role of vanillic acid. Environ. Sci. Pollut. Res. Int. 23, 5154-65.
  • Forman R.T. 1968. Caloric values of bryophytes. Bryologist. 71, 344–347.
  • Gellerman, J.L. Anderson, W.H. Schlenk H. 1972. Highly unsaturated lipids of Mnium, Polytrichum, Marchantia and Matteuccia. Bryologist. 75, 550-557.
  • Gellerman J. L. Anderson W. H. Richardson D.G. Schlenk H. 1975. Distribution of arachidonic and eicosapentaenoic acids in the lipids of mosses. Biochimica Biophysica Acta. 388, 277-284.
  • Glime J.M. 2007. Bryophyte Ecology. Physiological Ecology.E-book. Michigan Technological University and International Association of Bryologists. Houghton.
  • Hara A. Radin N.S. 1978. Lipid extraction of tissues with a low-toxicity solven. Analytical Biochemistry. 90, 420-426.
  • Hansen C.E. Rossi P. 1991. Effects of culture conditions on accumulation of arachidonic and eicosapentaenoic acids in cultured cells of Rhytidiadelphus squarrosus and Eurhynchium striatum. Phytochemistry. 30, 1837-1841.
  • Hartmann E. Beutelmann P. Vandekerkhove O. Euler R. Kohn G. 1986. Moss cell cultures as sources of arachidonic and eicosapentaenoic acids. FEBS Letters. 198, 51-58.
  • Heinrichs J. Anton H. Gradstein S.R. Mues R. 2000. Systematics of Plagiochila Sect. Glaucescentes Carl (Hepaticae) from Topical America. A Morphological and Chemotaxonomical Approach. 220, 1-2.
  • Hsu B. Coupar I.M. Ng K. 2006. Antioxidant activity of hot water extract from the fruit of the Doum palm, Hyphaene thebaica, Food Chemistry. 98, 317–328.
  • Jamieson G.R. 1975. Identification of octadeca9,12-dien-6-ynoic acid in the moss Fontinalis antipyretica. Journal of Chromatographic Science. 13, 491-494.
  • Jamieson G.R. Reid E.H. 1976a. Gas-liquid chromatography characteristics of some long-chain acetylenic methyl esters. Journal of Chromatography. 128, 193-195.
  • Jamieson G.R. Reid E.H. 1976b. Lipids of Fontinalis antipyretica. Phytochemistry. 15, 1731-1734.
  • Karunen P. 1982. Possible evolutionary significance of galacto-lipid fatty acid in bryophyta. The Journal of the Hattori Botanical Laboratory. 53, 255-269.
  • Klavina, L. 2015. A study on bryophyte chemical composition–search for new applications, Agronomy Research. 13, 969–978.
  • Kohn G. Demmerle S. Vandekerkhove O. Hartmann E. Beuteimann P. 1987a. Distribution and chemotaxonomic significance of acetylenic fatty acids in mosses of the Dicranales. Phytochemistry. 26, 2271-2275.
  • Kohn G. Vierengel A. Vandekerkhove O. Hartmann E.1987b. 9-Octadecen-6-ynoic acid from Riccia fluitans. Phytochemistry. 26, 2101-2102.
  • Kürschner H. Frey W. 2011. Liverworts, mosses and hornworts of Southwest Asia (Marchantiophyta, Bryophyta, Anthocerotophyta). Nova Hedwigia Beihefte. 139, 1–240.
  • Lu Y. Eiriksson F.F. Thorsteinsdottir M. Simonsen H.T. 2019. Valuable fatty acids in bryophytes-production, biosynthesis, analysis and applications. Plants (Basel). 19, 524.
  • Nishiki M. Toyota M. Asakawa. Y. 2007. Chemical constituents of the liverwort, Radula species and distribution of atocopherol in liverworts. In: 51st Symposium on Chemistry of Terpenes, Essential Oils and Aromatics, Nagashima. Japan.
  • Özcan G. Demir E. Yılmaz Ö. Erdem erişir F. Engin H. 2019. Effect of vanillic acid against oxidative stress induced by glyphosate in Saccharomyces cerevisiae. Biological Diversity and Conservation. 12, 34-43.
  • Özenoğlu Kiremit H. Keçeli T. 2009. An annotated check-list of the Hepaticae and Anthocerotae of Turkey. Cryptogamie Bryologie. 30, 343–356.
  • Sadamori M. 2009. Studies on the new biologically active substances of Tahitian and Tokushima’s Plagiochila genus. Master thesis, Tokushima Bunri University, Tokushima.
  • Shanab S.M.M. Hafez R.M. Fouad A.S. 2018. A review on algae and plants as potential source of arachidonic acid. Journal of Advanced Research. 11, 3-13.
  • Sewon P. 1992. Fatty acyl composition of monogalactosyldiacyl glycerols in bryophyta. Phytochemistry. 31, 3461- 3465.
  • Whittemore A.T. 1991. The secondary chemistry of the Marchantiales. Advances in Bryology. 4, 75-102.
  • Zinsmeister H.D. Mues R. 1990. Bryophytes: Their Chemistry and Chemical Taxonomy. Clarendon Press. Oxford.