Van Havzası İçerisinde Yer Alan Mera Arazilerinde SMAF Modeli Kullanılarak Toprak Kalitesinin Değerlendirilmesi

Toprağın karasal ekosistem için çok önemli olan üretkenlik fonksiyonunu sürdürülebilir bir şekilde yerine getirebilmesi, kalitesinin doğru anlaşılması ve izlenmesi ile mümkündür. Bu çalışmanın amacı, yarı kurak karasal ekosisteme sahip olan ve Van havzası içerisinde yer alan mera arazilerinde dağılım gösteren toprakların SMAF modeli kullanılarak fiziksel, kimyasal ve biyolojik kalite indeks değerleri ile toplam toprak kalite özelliklerini belirlemektir. Bu amaçla, 6024 ha büyüklüğündeki araştırma alanını temsil eden 150 adet yüzey (0-30 cm) toprak örneklemesi yapılmıştır. SMAF modeli toprakların fiziksel, kimyasal ve biyolojik indikatörleri kapsamında; yarayışlı su içeriği, su dolu gözenek hacmi, hacim ağırlığı, agregat stabilitesi, toprak organik karbon içeriği, toprak pH’sı, elektriksel iletkenlik, sodyum adsorpsiyon oranı, bitkiye yarayışlı fosfor ve potasyum, potansiyel mineralize olabilir azot, mikrobiyal biyokütle karbonu ve βeta-Glukosidaz enzim aktivitesi indikatörleri olmak üzere toplam 13 indikatör içermektedir. Bu çalışma kapsamında potansiyel mineralize olabilir azot ve βeta-Glukosidaz enzim aktivitesi dışında on bir adet indikatör kullanılmıştır. Elde edilen sonuçlara göre mera topraklarının kimyasal kalite indeksinin düşük sınıfta, biyolojik kalite indeksinin ise yüksek sınıfta olduğu belirlenmiştir. Fiziksel toprak kalite ve toplam kalite indeks değerlerinin ise orta düzeyde oldukları belirlenmiştir. Özellikle biyolojik kalite indeksi olmak üzere; tüm kalite sınıfları, alan içerisindeki dağılımları bakımından yüksek değişkenlik göstermektedir. Çalışma alanının orta kesimlerinin tüm kalite sınıfları için düşük düzeyde olduğu belirlenmiş olup, bu durumun özellikle eğimin fazla ve erozyonun yüksek olmasından kaynaklandığı belirlenmiştir.

Soil Quality Assessment using SMAF Model in Pasture Land located in Van Basin

It is possible that the soil can sustainably perform the productivity function, which is very important for the terrestrial ecosystem, with the correct understanding and monitoring of its quality. The purpose of this study is to determine the distribution of physical, chemical, biological and total soil quality indexes or pasture soils located in Van Basin which has semi-arid terrestrial ecosystems. For this purpose, 150 soil samples were collected from surface soil (o-30 cm) in the study area which covers about 6024 ha. SMAF models includes 13 indicators such as aggregate stability, available water content, water-filled pore volume, total organic carbon, pH, electrical conductivity, the sodium adsorption ratio (SAR), microbial biomass carbon, available phosphorus, βeta-Glukosidaz enzyme activity, potential mineralizable nitrogen and available potassium as physical, chemical and biological indicators. In this present study, 11 indicators were used in SMAF model except for βeta-Glukosidaz enzyme activity, potential mineralizable nitrogen. According to obtained results, it is determined that while the chemical quality index of the meadow soils was in the low class, biological quality of them was found in high quality class. Apart from that, physical and total soil quality indexes were found as moderate quality class. Additionally, the distribution of biological soil quality index shows higher variation in the research area when it is compared with the other quality indexes. It is determined that the middle parts of the research area is in a low class for all quality indexes and the reason of this situation is that the highness of slope and soil erosion.

___

  • Ahmed, A., Khalid, N., Ahmad, A., Abbasi, N. A., Latif, M. S. Z. ve Randhawa, M. A., 2014. Phytochemicals and biofunctional properties of buckwheat: A review. Journal of Agricultural Science, 152(3), 349–369. doi:10.1017/S0021859613000166.
  • Ahmed, G.B., Shariff, A.R.M., Balasundram, S.K., Fikri bin Abdullah, A., 2016. Agriculture land suitability analysis evaluation based multi criteria and GIS approach. IOP Conference Series: Earth and Environmental Science, 37, 012044, doi:10.1088/1755-1315/37/1/012044.
  • Amorim H.C.S., Ashworth A.J., Moore P., Wienhold B.J., Savin M.C., Owens P.R., Jagadamma S., Carvalho T.S., Xu S., 2020. Soil quality indices following long-term conservation pasture management practices. Agriculture Ecosystems & Environment 301(12):107060. doi: https://doi.org/10.1016/j.agee.2020.107060.
  • Andrews, S.S., Karlen, D., Cambardella, C.A., 2004. The soil management assessment framework: a quantitative soil quality evaluation method. Soil Sci. Soc. Am. J., 68: 1945–1962.
  • Arshad, M., Martin, S., 2002. Identifying critical limits for soil quality indicators in agro-ecosystems. Agriculture Ecosystems & Environment 88(2):153-160. doi: https://doi.org/10.1016/S0167-8809(01)00252-3.
  • Arshad, M.A., Martin, S., 2002. Identifying critical limits for soil quality indicators in agro-ecosystems. Ecosystems & Environment. 88, 153-160. doi: https://doi.org/10.1016/S0167-8809(01)00252-3.
  • Bayramin, İ., 2003. Beypazarı Topraklarının Medalus Metoduna Göre Toprak Kalite Toprak Kalite İndekslerinin Belirlenmesi Harran Üniv. Ziraat Fak. Derg., 7 (3-4):29.
  • Bilotta, G.S., Brazier, R.E., Haygarth, P.M., 2007. The impacts of grazing animals on the quality of soils, vegetation, and surface waters in intensively managed grasslands. Adv. Agron. 237–280. doi: https://doi.org/10.1016/S0065-2113(06)94006-1.
  • Blake, G.R., Hartge, K.H., 1986. Particle density. In Physical and Mineralogical Methods, Edited by: Klute, A. 377–382. Madison: Soil Science Society of America.
  • Byrnes, R.C., Eastburn, D.J., Tate, K.W., Roche, L.M., 2018. A global meta-analysis of grazing impacts on soil health indicators. J. Environ. Qual. 47, 758–765. doi: https://doi. org/10.2134/jeq2017.08.0313.
  • Carter, M.R., 2002. Soil Quality for Sustainable Land Management: Organic Matter and 442 Aggregation Interactions that Maintain Soil Functions. Agronomy 94, 38-47.
  • Chaubey, I., Chiang, L., Gitau, M.W., Mohamed, S., 2010. Effectiveness of best management practices in improving water quality in a pasture-dominated watershed. J. Soil Water Conserv. 65, 424–437. doi: https://doi.org/10.2489/jswc.65.6.424.
  • Chen, Y.D., Wang, H.Y., Zhou, J.M., Xing, L., Zhu, B.S., Zha, Y.C., Chen, X.Q., 2013. Minimum data set for assessing soil quality in farmland of Northeast China, Pedosphere, 23(5), 564–576.
  • Demirağ Turan, İ., Dengiz O., Özyazıcı M.A., 2018a. Land Qualıty Assessment For Agrıcultural Actıvıtıes In Sınop Provınce. Internatıonal Asıan Congress On Contemporary ScıenceS. April 15-24, 2019, Mecca – SAUDI ARABIA. Congress Proceedings Book, Pages 56-71.
  • Demirağ Turan, İ., Dengiz O., Özyazıcı M.A., 2018b. Trabzon İli Tarım Topraklarının Toprak Kalite İndeksinin Değerlendirilmesi. TÜCAUM 30. Yıl Uluslararası Coğrafya Sempozyumu International Geography Symposium on the 30th Anniversary of TUCAUM October 3-6, 2018, Ankara. Proceedings Book, Pages 651-661.
  • Demirag, Turan, I., Dengiz, O., Özkan, B., 2019. Spatial assessment and mapping of soil quality index for desertification in the semiarid terrestrial ecosystem using MCDM in interval type-2 fuzzy environment. Computers and Electronics in Agriculture, 164, 104933. doi: https://doi.org/10.1016/j.compag.2019.104933.
  • Dengiz, O., 2020. Soil quality index for paddy fields based on standard scoring functions and weight allocation method. Archives of Agronomy and Soil Science 66(3), 301-315. doi: https://doi.org/10.1080/03650340.2019.1610880.
  • Dengiz, O., İç, S., Saygın, F., İmamoğlu, A., 2020. Assessment of Soil Quality Index for Tea Cultivated Soils in Ortaçay Micro Catchment in Black Sea Region. Journal of Agricultural Sciences 26; 42-53.
  • Ditzler, C.A., Tugel. A.J., 2002. Soil Quality Field Tools: Experiences of USDA-NRCS Soil Quality Institute. Agronomy Journal 94: 33-38. Doran, J, Parkin, T.P., 1996. Quantitative Indicators of soil quality: A minimum data set. In: Doran J, Jones, A., editor. Methods for assessing soil quality. Wisconsin: Soil Science Society of America; 1996. p. Chapter 2.
  • Doran J.W., 2002. Soil health and global sustainability:translating science into practice. Agriculture, Ecosystems and Environment 88 (2002) 119–127. Doran J.W., Zeiss M., 2000. Soil health and sustainability: Managing the biotic component of soil quality. Applied Soil Ecology 15(1):3-11.
  • Doran, J. W., Jones, A. J. (Eds.) 1996. Methods for Assessing Soil Quality. SSSA Special Publication No. 49. Soil Sci. Soc. America. Madison, Wisc. Doran, J.W., Parkin, T.B., 1994. Defining and Assessing Soil Quality. Defining Soil 451 Quality for a Sustainable Environment, 3-21.
  • Drewry, J.J., 2006. Natural recovery of soil physical properties from treading damage of pastoral soils in New Zealand and Australia: a review. Agric. Ecosyst. Environ. 114, 159–169. doi: https://doi.org/10.1016/j.agee.2005.11.028.
  • Emadi, M., Baghernejad, M., Memarian, H.R., 2009. Effect of land-use change on soil 453 fertility characteristics within water-stable aggregates of two cultivated soils in northern 454 Iran. Land Use Policy 26, 452-457.
  • Everest T., Sungur A., Özcan H., 2020. MEDALUS Yöntemi Kullanılarak Karacabey Tarım İşletmesi Toprak Kalite İndeksinin Değerlendirilmesi. Türk Tarım ve Doğa Bilimleri Dergisi 7(1): 120–131. doi: https://doi.org/10.30910/turkjans.680030.
  • Filip, Z., 2002. International approach to assessing soil quality by ecologically-related biological parameters. Agriculture, Ecosystems and Environment 88, 169-174.
  • Franchini, J.C., Crispino, C.C., Souza, R.A., Torres, E., Hungria, M., 2007. Microbiological parameters as indicators of soil quality under various soil management and crop rotation systems in southern Brazil. Soil Till. Res., 92:18-29. doi: https://doi.org/10.1016/j.still.2005.12.010.
  • Gugino B K, Abawi G S, Idowu O J, Schindelbeck R R, Smith L L, Thies J E, Wolfe D W, Van Es H M, 2009. Cornell soil health assessment training manual. Cornell University College of Agriculture and Life Sciences.
  • Gülnar, M., Barik, K., 2019. Farklı Arazi Kullanımı Altındaki Podzolik Toprakların Kalite Parametrelerinin Belirlenmesi. Atatürk Üniv. Ziraat Fak. Derg., 50 (2): 128-135. doi: 10.17097/ataunizfd.480971.
  • Johnson, P. N., S. K. Misra, R. T. Ervin. 1997. A Qualitative Choice Analysis of Factors Influencing Post-CRP Land Use Decisions. Journal of Agriculture and Applied Economics 29:163-173, July.
  • Karaca, S., Dengiz, O., Turan, İ.D., Özkan, B., Dedeoğlu, M., Gülser, F., Sargın, B., Demirkaya, S., Ay A., 2021. An assessment of pasture soils quality based on multi-indicator weighting approaches in semi-arid ecosystem. Ecological Indicators 121. doi: https://doi.org/10.1016/j.ecolind.2020.107001.
  • Karlen, D.L., Andrews, S.S., Wienhold, B.J., Zobeck, T.M., 2008. Soil Quality Assessment: Past, Present and Future. Electronic Journal of Integrative Biosciences 6(1):3-14.
  • Karlen, D.L., Gardner, J.C., Rosek. M.J., 1998. A soil quality framework for evaluating the impact of CRP. J. Prod. Agric. 11:56–60.
  • Karlen, D.L., Stott, D.E., 1994. A framework for evaluating physical and chemical indicators of soil quality. Pages 53-72, In: Doran, J.W.; Coleman, D.C.; Bezdicek, D.F. and Stewart, B.A. (Editors) Defining Soil Quality for a Sustainable Environment. SSSA Special Publication no.35, Soil Science Society of America, Madison, WI.
  • Kemper,W.R., Rosenau. R.C., 1986. Aggregate stability and sized distribution. p. 425–442. In A. Klute (ed.) Methods of soil analysis. Part 1. 2nd ed.Agron.Monogr. 9.ASA, SSSA,CSSA,Madison,WI.
  • Klingebiel, A.A., Montgomery, P.H., 1961. Land Capability Classification. US Department of Agriculture Handbook 210, GovernmentPrinter, Washington DC, US.
  • Klute, A., 1986. Water retention: Laboratory methods. p. 635-662. In A. Klute (ed.) Methods of soil analysis. Part I. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
  • Lal, R., 2015. Restoring soil quality to mitigate soil degradation. Sustainability 7, 5875–5895. doi: https://doi.org/10.3390/su7055875.
  • Larson, W. E., Pierce, F. J., 1994. The Dynamics of Soil Quality as a Measure of Sustainable Management, In Defining Soil Quality for a Sustainable Environment. SSSA Special Publication 35, Soil Science Society of America and American Society of Agronomy, 37-51.
  • Linlin, J., Guangming, H., Lan, Y., Liu, S., Gao, J., Yang, X., 2017. Corn con biochar increasing soil culturable bacterial abundance without enhancing their capacities in utilizing carbon source in Biolog Eco-plates. J. Integr. Agric. 16(3), 713-724
  • Machmuller, M.B., Kramer, M.G., Cyle, T.K., Hill, N., Hancock, D., Thompson, A., 2015. Emerging land use practices rapidly increase soil organic matter. Nat. Commun. 6, 1–5. https://doi.org/10.1038/ncomms7995.
  • Martinez-Salgado, M.M, Gutiérrez-Romero, V., Jannsens, M., Ortega-Blu, R., 2010. Biological soil quality indicators: a review. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology A. Méndez-Vilas (Ed.), p319-328.
  • MGM. 2018. Meteoroloji Genel Müdürlüğü. https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?m=VAN (Erişim tarihi Ocak 2021) Mukhopadhya, S., Maiti, S.K., Masto, R.E., 2014. Development of mine soil quality index (MSQI) for evaluation of reclamation success. A Chrono-sequence study. Eco Eng. 71, 10–20.
  • Nabiollahi, K., Taghizadeh-Mehrjardi, R., Kerry, R., Moradian, S., 2017. Assessment of soil quality indices for salt-affected agricultural land in Kurdistan Province, Iran, Ecological Indicators, 83, 482-494.
  • Negiş, H., Şeker, C, 2019. Improving Soil Quality Card For Soil Sustainability in Konya, Turkey. 6th International Conference on Sustainable Agriculture and Environment October 3-5, 2019, City of KONYA – TURKEY. Proceedings Book, Pages 183-185.
  • Nelson, R. E., 1982. Carbonate and gypsum. In A. L. Page et al. (ed.) Methods of soil analysis, Part 2. 2nd ed. Agronomy 9:181-197.
  • Obade V.P., Lal R., 2016. Towards a standard technique for soil quality assessment . Geoderma 265 (2016) 96–102.
  • Olsen, S.R., Cole, V., Watanabe, F.S., Dean, L.A., 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U.S.D.A. Circular no. 939. Washington D.C.
  • Özbek, A.K., 2004. Aşağı Pasinler Ovası Topraklarının Toprak Kalite İndeks Parametreleri Bakımından Değerlendirilmesi. Ekoloji, 2004, Issue 51, Pages: 39-44.
  • Özdemir, N., Atalay, T., 2019. Konvansiyonel ve organik çay tarımı uygulamalarının bazı toprak kalite parametreleri ve erozyona duyarlılık üzerine etkileri. Anadolu Tarım Bilim. Dergisi, 34, 397-405. doi: https://doi.org/10.7161/omuanajas.557976.
  • Pilon, C., Moore, P.A., Pote, D.H., Martin, J.W., DeLaune, P.B., 2017. Effects of grazing management and buffer strips on metal runoff from pastures fertilized with poultry litter. J. Environ. Qual. 46, 402–410. doi: https://doi.org/10.2134/jeq2016.09.0379.
  • Pimentel, D., Kounang, N., 1998. Ecology of Soil Erosion in Ecosystems, Ecosystems 1, (1998): 416–426.
  • Proffitt, A.P.B., Bendotti, S., McGarry, D., 1995. A comparison between continuous and controlled grazing on a red duplex soil. I. Effects on soil physical characteristics. Soil Tillage Res. 35, 199–210. doi: https://doi.org/10.1016/0167-1987(95)00486-6.
  • Pulido, M., Schnabel, S., Lavado Contador, J.F., Lozano-Parra, J., González, F., 2018. The impact of heavy grazing on soil quality and pasture production in rangelands of SW Spain. Land Degrad. Dev. 29, 219–230. doi: https://doi.org/10.1002/ldr.2501.
  • Qi, Y., Darilek, J.L., Huang, B., Zhao, Y., Sun, W., Gu, Z., 2009. Evaluating soil quality indices in an agricultural region of Jiangsu Province, China. Geoderma, 149, 325-334.
  • Raiesi, F., 2017. A minimum data set and soil quality index to quantify the effect of land 504 use conversion on soil quality and degradation in native rangelands of upland arid and 505 semiarid regions. Ecological Indicators 75, 307-320.
  • Rahmanipour, F., Marzaioli, R., Bahrami, H.A., Fereidouni, Z., Bandarabadi, S.R., 2014. Assessment of soil quality indices in agricultural lands of Qazvin Province, Iran. Ecol. Indicators 40, 19–26. doi: https://doi.org/10.1016/j.ecolind.2013.12.003.
  • Rasheed, S.A., Prabhu, N.T., Munshi, A.K., 1996. Electromyographic and ultrasonographic observations of masseter and anterior temporalis muscles in children. J. Clin. Pediatr. Dent. 20: 127–132.
  • Rhoades, J., Chandavi, D., Lesch, S. F., 1999. Soil Salinity Assessment Methods and Interpretation of Electrical Conductivity Measurement FAO Irrigation and Drainage, Paper 57, Rome.
  • Sanchez-Navarro, A., Gil-Vazquez, J.M., Delgado-Iniesta, M.J., Marin-Sanleandro, P., Blanco-Bernardeau, A., Ortiz-Silla, R., 2015. Establishing an index and identification of limiting parameters for characterizing soil quality in Mediterranean ecosystems. Catena, 131, 35–45.
  • Soil Survey Staff. 1975. Soil Taxonomy. A Basic System of Soil Classification for Making and Interpreting Soil Surveys, Agriculture Handbook, 436, Soil Conservation Service, US Department of Agriculture, Washington DC.
  • Swanepoel, P.A., Preez, C.C., Botha, P.R., Snyman, H.A., Habig, J., 2014. Soil quality characteristics of kikuyuryegrass pastures in South Africa. Geoderma 232, 589–599. doi: https://doi.org/10.1016/j.geoderma.2014.06.018.
  • Thomas, G.W., 1982. Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties, Page,A.L., Miller, R.H. Keeney, D.R.(ed) 2nd edition. S.S.S.of America Inc. Publisher, Madison,Wisconsin pp159-164.
  • Türkmen C., Müftüoğlu N.M., Kavdır Y., 2013. Değişik Yöntemlerle Islah Edilen Meralarda Bazı Toprak Kalite Özelliklerinin Değişimi (Change of Some Soil Quality Characteristics under Different Pasture Reclamation Methods of Rangelands). Tarım Bilimleri Dergisi – Journal of Agricultural Sciences 19 (2013) 245-255.
  • Ünal, M., Behçet, L., 2007. Flora of Pirreşit Mountain (Van, Turkey). Turkish Journal of Botany. 31: 193-223.
  • Vasques, I.C.F., Souza, A.A., Morais, E.G., Benevenute, P.A.N., Silva, L., de C.M, d., Homem, B.G.C., Casagrande, D.R., Silva, B.M., 2019. Improved management increases carrying capacity of Brazilian pastures. Agric. Ecosyst. Environ. 282, 30–39. doi: https://doi.org/10.1016/j.agee.2019.05.017.
  • Yemefack, M., Jetten, V.G., Rossiter, D.G., 2006. Developing a minimum data set for characterizing soil dynamics in shifting cultivation systems. Soil and Tillage Research. Volume 86, Issue 1, March 2006, Pages 84-98.
Anadolu Tarım Bilimleri Dergisi-Cover
  • ISSN: 1308-8750
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1986
  • Yayıncı: Ondokuz Mayıs Üniv. Ziraat Fak.