PATATES (SOLANUM TUBEROSUM L.)’TE IN VITRO ŞARTLARDA MİKROYUMRU ELDE EDİLMESİNİ ETKİLEYEN FAKTÖRLER

Hastalıktan ari fide elde edilmesi, germplazm muhafazası ve değişimi, ve tohumluk yumru elde edilmesi gibi amaçlarla patates (Solanum tuberosum L.) bitkisinin in vitro şartlarda mikroçoğaltımı ve mikroyumru (MY) elde edilmesi yaygın olarak kullanılmaktadır. Patateste MY araştırmaları temelde bitki büyüme düzenleyicileri üzerine yoğunlaşmış, ancak bu çalışmaların sonuçlarında önemli farklılıklar olduğu belirlenmiştir. Bu derlemenin amacı; in vitro şartlarda kültüre alınmış patates bitkiciklerinin MY meydana getirme özellikleri üzerine, bitki büyüme düzenleyicileri yanında çeşidin, eksplant kaynağı ve tipinin, inokülasyon yoğunluğunun, katılaştırıcı destek maddesinin, fotoperiyotun, sıcaklığın, karbonhidratın, kültür ortamındaki azot ve potasyum içeriğinin etkilerini araştırmaktır.

FACTORS AFFECTING MICROTUBERIZATION OF POTATO (SOLANUM TUBEROSUM L.) ON IN VITRO CONDITIONS

Micropropagation and microtuberization of potato (Solanum tuberosum L.) by in vitro culture was commonly used for the production of disease-free plantlets, germplasm conservation and exchange, and seed tuber production. Research on microtuberization in potato has mainly focused on the use of plant growth regulators however there is a significant variation in the results of these studies. Therefore, it is important to understand factors affecting microtuberization. The purpose of this review is to examine the effects of cultivar, explant source and types, inoculation density, solidifying support material, photoperiod, temperature, composition of carbohydrates, content of nitrogen and potassium in nutrient medium in addition to plant growth regulators in microtuberization of potato plantlets cultivated in vitro.

___

  • Altındal, D, Karadoğan, T. 2010. The effect of carbon sources on in vitro microtuberization of potato (Solanum tuberosum L.). Turkish J of Field Crops, 15 (1): 7-11.
  • Arregui, L. M., Veramendi, J., Mingo-Castel, A. M. 2003. Effect of gelling agents on in vitro tuberization of six potato cultivars. Amer J of Potato Res., 80: 141-144.
  • Arvin, M. J., Habib, A., Donnelly, D. 2005. Effects of calcium concentration in medium on microtuberization of potato (Solanum tuberosum L.). Iranian J of Biotech., 3 (3): 152-156.
  • Aryakia, E., Hamidoghli, Y. 2010. Comparison of kinetin and 6-benzyl amino purine effect on in vitro microtuberization of two cultivars of potato (Solanum tuberosum L.). American-Euroasian J. Agric. & Environ. Sci., 8 (6): 710-714.
  • Aslam, A., Ali, A., Naveed, N. H., Saleem, A., Iqbal, J. 2011. Effect of interaction of 6-benzyl aminopurine (BA) and sucrose for efficient microtuberization of two elite potato (Solanum tuberosum L.) cultivars, Desiree and Cardinal. African J of Biotechnology 10 (59): 12738-12744.
  • Badawi, M. A., El-Sayed, S. F., Edriss, N. H., El-Barkouki, T. M. 1995. Factors affecting production of potato microtubers from meristem tip in vitro. Egyptian J of Horticulture, 22 (2): 137-149.
  • Banfalvi, Z., Molnar, A., Kostyal, Z., Lakatos, L., Molnar, G. 1997. Comparative studies on potato tuber development using an in vitro tuber induction system. Acta Biologica Hungarica, 48(1):77-86.
  • Bizarri, M., Borghi, L., Ranalli, P. 1995. Effects of activated charcoal effects on induction and development of microtubers in potato (Solanum tuberosum L.). Annals of Applied Biology, 127 (1): 171-181.
  • Castro, G., Abdala, G., Agüero, C., Tzio, R. 2000. Interaction between jasmonic and gibberellic acids on in vitro tuberization of potato plantlets. Potato Res., 43 (1): 83-88.
  • Cenzano, A., Vigliocco, A., Kraus, T., Abdala, G. 2003. Exogenously applied jasmonic acid induces changes in apical meristem morphology of potato stolons. Annals of Botany, 91: 915-919.
  • Chandra, R., Dodds, J. H., Tovar, P. 1988. In vitro tuberisation in potato (Solanum tuberosum L.). Int. Association of Plant Tissue Culture Newsletter, 55:10-20.
  • Charles, G., Rossingol, L., Rossingol, M. 1992. Environmental effect on potato plants in vitro. J of Plant Physiology, 6: 708-713.
  • Chen, S. N., Li, Q. H., Wang, L. H., Nie, W. M., Wang, J. 1991. Effect of coumarin and oligosaccharins on in vitro tuberization of potato. Acta Botanica Yunnanica. 13 (3): 321-326.
  • Coleman, W. K., Donnelly, D. J., Coleman, S. E. 2001. Potato microtubers as research tools: A review. Am J Potato Res., 78: 47-55.
  • de Paiva Neto, V. B., W. C. Otoni. 2003. Carbon sources and their osmotic potential in plant tissue culture: does it matter? Scientia Horticulturae, 97: 193-202.
  • Dermastia, M., Ravnikar, M., Kovac, M. 1996. Morphology of potato (Solanum tuberosum L. cv Sante) stem node cultures in relation to the level of endogenous cytokinins. J of Plant Growth Reg., 15 (3): 105-108.
  • Deryabin, A. N., Yur’eva, N. O. 2001. Periodicity of tuberization stages in potato in vitro. Russian Agric. Sci., 3: 6-8.
  • Deryabin, A. N., Yur’eva, N. O. 2010. Exogenous regulation of tuberization of Solanum tuberosum L. in culture in vitro (Review). Сельскохозяйственная биология, 3: 17-25.
  • Dhital, S. P, Lim, H. T., 2004. Microtuberization response in several genotypes of potato (Solanum tuberosum L.) by direct addition of liquid medium to in vitro plantlets. J. Kor. Soc. Hort. Sci. 45 (6): 281-286.
  • Dobranszki, J. 1997a. Effects of dark treatment on tuber initiation and development of induced potato plantlets cultured in vitro. Acta Agronomica Hungarica, 44 (4): 377-386.
  • Dobranszki, J. 1997b. Effect of light on in vitro tuberization of potato of pure Solanum tuberosum origin. Acta Agronomica Hungarica, 45 (4): 383-397.
  • Dobranszki, J., Tabori, K. M., Frenczy, A. 1999. Light and genotype effects on in vitro tuberization of potato plantlets. Potato Res., 42 (3-4): 483-488.
  • Dobranszki, J. 2001. Effects of light on in vitro tuberization of the potato cultivar Desiree and its relatives. Acta Biologica Hungarica, 52 (1): 137-147.
  • Donnelly, D. J., Coleman, W. K., Coleman, S. E. 2003. Potato microtuber production and performance: a review. Am J of Potato Res., 80: 103-115.
  • Dragicevic, I., Konjevic, R., Vinterhalter, B., Vinterhalter, D., Neskovic, M. 2008. The effects of IAA and tetcyclacis on tuberization in potato (Solanum tuberosum L.) shoot cultures in vitro. Plant Growth Regul., 54: 189-193.
  • Ebadi, M., Iranbakhsh, A. 2011. The induction and growth of potato (Solanum tuberosum L.) microtubers (Sante cultivar) in response to the different concentrations of 6-benzylaminopurine and sucrose. African J of
  • Biotechnology, 10 (52): 10626-10635.
  • Elshibli, M. A. I. S. 2000. Effect of genotype on morphogenesis of ten Solanum potato varieties cultured in vitro . In: Fifth Triennial Congress Proceedings of the African Potato Association, 29 May–2 June, 2000, Uganda, pp: 23-26.
  • Ewing, E. E. 1985. Cuttings as simplified models of the potato plant. In: Potato Physiology (Ed. P. H. Li). Academic Press, New York, USA, pp: 153-207.
  • Ewing, E. E., Struik, P.C. 1992. Tuber formation in potato: induction, initiation and growth. Hort. Reviews, 14: 89-198.
  • Forti, E., Mandalino, G., Ranalli, P. 1991. In vitro tuber induction: influence of the variety and of the media. Acta Horticulturae, 300: 127-132.
  • Fufa, M., Diro, M. 2013. The effects of sucrose on in vitro tuberization of potato cultivars. Advances in Crop Sci. & Tech., 1(4): 1-3.
  • Garner, N., Blake, J. 1989. The induction and development of potato microtubers in vitro media free of growth regulating substances. Annals of Botany 63: 663-674.
  • Ghavidel, R. A., Bolandi, A. R., Hamidi, H., Foroghian, S.
  • Effects of plant growth regulators and photoperiod on in vitro microtuberization of potato (Solanum tuberosum L.). African J of Biotechnology, 11 (53): 11585-11590.
  • Gopal, J., Minocha, J. L., Dhaliwal, H. S. 1998. Microtuberization in potato (Solanum tuberosum L.). Plant Cell Reports, 17:794-798.
  • Gönülşen, N. 1987. Bitki doku kültürleri yöntemleri ve uygulama alanları. Ege Tar. Arş. Ens. Md. Yayınları, No. 78, Menemen, İzmir, 140 s.
  • Harvey, B. M. R., Crothers, S. H., Evans, N. E., Selby, C. 1991. The use of growth retardants to improve microtuber formation by potato (Solanum tuberosum L.). Plant Cell, Tissue and Organ Culture, 27 (1): 59-64.
  • Hatipoğlu, R. 2008. Bitki Biyoteknolojisi. Çukurova Üniv., Ziraat Fakültesi Yayınları, Genel Yayın No: 190, Ders Kitapları Yayın No: A-58, pp: 15-30.
  • Hoque, M. E. 2010. In vitro tuberization in potato (Solanum tuberosum L.). Plant Omics Journal. 3 (1): 7-11.
  • Hossain, M. J. 2005. In vitro microtuberisation of potato obtained from diverse sources. Plant Tissue Cult. & Biotech. 15 (2): 157-166.
  • Hossain, M. J., Siddique, M. A. 2011. Effect of nitrogen and coumarin on in vitro microtuberisation of potato. SAARC J. Agri., 9 (2): 17-27.
  • Hussain, I., Chaudhry, Z., Muhammed, A., Asghar, R., Naqvi, S. M. S., Rashid, H. 2006. Effect of chlorocholine chloride, sucrose and BAP on in vitro tuberization in potato (Solanum tuberosum L. cv. Cardinal). Pak. J. Bot., 38 (2): 275-282.
  • Hussey, G., Stacey, N. J. 1984. Factors affecting the formation of in vitro tubers of potato (Solanum tuberosum L.). Annals of Botany, 53: 565-578.
  • Imani, A. A., Qhrmanzadeh, R., Azimi, J., Janpoor, J. 2010. The effect of various concentrations of 6-benzylaminopurine (BAP) and sucrose on in vitro potato (Solanum tuberosum L.) microtuber induction. American-Euroasian J. Agric. & Environ. Sci., 8 (4): 457-459.
  • Iranbakhsh, A., Ebadi, M., Zare, Z. 2011. Effects of nitrogen and potassium on in vitro microtuberization of potato (Solanum tuberosum L. var Agria). Australian J of Basic and Applied Sciences. 5(12): 442-448.
  • Kamarainen-Karppinen, T., Virtanen, E., Rokka, V. M., Pirtilla, A. M. 2010. Novel bioreactor technology for mass propagation of potato microtubers. Plant Cell Tiss Organ Cult., 101: 245-249.
  • Karadoğan, T. 1994. Patateste doku kültürünün kullanım alanları ve uygulanması. Atatürk Ü. Zir. Fak. Der. 25:(2), 275-290.
  • Khuri, S., Moorby, J. 1995. Investigations into the role of sucrose in potato cv. Estima microtuber production in vitro. Annals of Botany 75: 295-303.
  • Klocek, J., Mioduszewska, H. 2001. The influence of salicylic acid and salicylhydroxamic acid on in vitro potato plant growth. Biotechnologia, 2 (53): 148-151.
  • Koda, Y., Okazawa, Y. 1983. Influences on environmental, hormonal and nutritional factors on potato tuberisation in vitro. Japanese J of Crop Sci., 52: 582-591.
  • Koda, Y., Okazawa, Y. 1988. Detection of potato tuber-inducing activity in potato leaves and old tubers. Plant Cell Physiol. 29 (6): 969-974.
  • Koda, Y., Kikuta, Y. 2001. Effects of jasmonates on in vitro tuberization in several potato cultivars that differ greatly in maturity. Plant Production Science, 4 (1): 66-70.
  • Kolomiets, M. V., Hannapel, D. J., Chen, H., Tymeson, M., Gladon, R. J. 2001. Lipoxygenase is involved in the control of potato tuber development. The Plant Cell, 13: 613-626.
  • Kovac, M., Ravnikar, M. 1994. The effect of jasmonic acid on the photosynthetic pigment of potato plants grown in vitro. Plant Science, 103: 101-107.
  • Kovac, M., Luskovec, M., Vilhar, B., Ravnikar, M. 1997. Peroxidase activity during rooting of potato stem nodes on medium with and without jasmonic acid. Acta Biologica Slovenica, 41 (4): 61-67.
  • Krauss, A., Marschner, H. 1982. Influence of nitrogen nutrition, day-length and temperature on contents of gibberellic acid and abscisic acid on tuberization in potato plants. Potato Res., 25: 13-21.
  • Kumlay, A. M., Eryiğit, T. 2011. Bitkilerde büyüme ve gelişmeyi düzenleyici maddeler: Bitki hormonları. Iğdır Üni. Fen Bilimleri Ens. Dergisi, 1(2): 47-56.
  • Lajayer, H. M., Esmaielpour, B., Chamani, E. 2011. Hinokitol and activated charcoal influence the microtuberization and growth of potato (Solanum tuberosum cv. Agria) plantlets in vitro. Australian J of Crop Science 5 (11): 1481-1485.
  • Lopez-Delgado, H., Scott, I. M. 1997. Induction of in vitro tuberization of potato microplants by acetylsalicylic acid. J of Plant Physiology. 151:1, 74-78.
  • Lopez-Delgado, H., Jimenez-Casas, M., Scott, I. M. 1998. Storage of potato microplants in vitro in the presence of acetylsalicylic acid. Plant Cell, Tissue and Organ Culture, 54: 145-152.
  • Mangat, B.S., Kerson, J., Walace, D. 1984. The effect of 2,4-D on tuberization and starch content of potato tubers produced on stem segments cultured in vitro. Am. Potato J., 1984, 61(6): 355-361.
  • Markarov, A. M., Golovko, T. K., Tabalenkova, G. N. 1993. Photoperiodic responses in the morphological and functional characteristics of three potato species. Soviet Plant Physiology. 40 (1): 32-36.
  • Marschner, H., Sattelmacher, B., Bangerth, F. 1984. Growth rate of potato tubers and endogenous contents of indolylacetic acid and abscisic acid. Physiologia Plantarum, 60 (1): 16-20.
  • Martin-Closas, L. I., A. M. Pelacho. 1997. Increase in potato tuberization and growth by jasmonic acid under photoperiod and at high temperatures. Hort. Biotech. In vitro Culture and Breeding (Eds. A. Altman and M. Ziv), ISHS Acta Horticulturae, (447): 165-166.
  • Martin-Closas, L. I., S. Sol and A. M. Pelacho. 2000. Potential application of jasmonic acid for Solanum tuberosum micropropagation. XXV. International Horticultural Congress, Part 10: Application of Biotechnology and Molecular Biology and Breeding-In vitro Culture, Brussels, Belgium (Eds. L. H. W. van der Plas and G. J. de Klerk). ISHS Acta Horticulturae 520: 127-134.
  • Mauk, C. S., Langille, A. R. 1978. Physiology of tuberisation in Solanum tuberosum L. cis-zeatin riboside in the potato plant: Its identification and changes in endogenous levels as influenced by temperature and photoperiod. Plant Physiology, 62: 438-441.
  • McGrady, J. J., Struik, P. C., Ewing, E. E., 1986. Effect of exogenous application of cytokinins on the development potato (Solanum tuberosum L.) cuttings. Potato Res., 29(2): 191-205.
  • Melchiorre, M. N., Casano, L. M. and Moriconi, D. N. 1997. Histological and exomorphological changes occuring during in vitro tuberization of potato cv. Spunta. Biocell, 21(2): 119-127.
  • Menzel, C. M. 1983. Tuberization in potato at high temperatures: interaction between shoot and root temperatures. Annals of Botany, 52: 65-69.
  • Mingo-Castel, A. M., Smith, O. E., Kumamoto, J. 1976.
  • Studies on the carbondioxide promotion and ethylene inhibition of tuberization in potato explants cultured in vitro. Plant Physiology, 57: 480-485.
  • Motallebi-Azar, A., Kazemiani, S. 2011. A new concept about carbon source roles on in vitro microtuberization of potato (Solanum tuberosum L.). Advances in Agriculture & Botanics-Int J of Bioflux Society, 3 (3): 160-167.
  • Motallebi-Azar, A., Kazemiani, S., 2013. The study of carbon sources efficiency on in vitro potato microtuberization. South Western J of Hort Biol and Env., 4 (1): 66-81.
  • Murashige, T., Skoog, F. 1962. A revised nedium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473-497.
  • Naik, P. S., Sarker, D. 1998. Effect of potassium on microtuber production in vitro. Biologia Plantarum, 41 (1): 121-125.
  • Nasiruddin, K. M., Blake, J. 1994. Production of potato microtubers with and without growth regulators. In: Physiology, Growth and Development of Plants in Culture (Eds. P. J. Lumsden, J. R. Nicholas, W. J. Davies). pp.254-260.
  • Nistor, A., Chiru, N., Cioloca, M., Popa, M., 2012. Influence of different potassium concentration in potato microtuberization. Studia Universitatis “Vasile Goldiş”, Seria Ştiintele Vietii, 22 (4): 543-547.
  • Nowak, J., Asiedu, S. K. 1992. Gelling agent and light effects on in vitro tuberization of potato cultivars. Am. Pot. J. 69: 461-470.
  • O’Brien, P. J., Allen, E. J., Firman, D. M. 1998. A review of some studies into tuber initiation in potato (Solanum tuberosum L.) crops. J of Agric. Sci., 130: 251-270.
  • Pelacho, A. M., Mingo-Castel, A. M. 1991. Jasmonic acid induces tuberization of potato stolons cultured in vitro. Plant Physiology, 97 (3): 1253-1255.
  • Peng, M., Wang, X., Li, L. 2012. The effect of plant growth regulator and active charcoal on the development of microtubers of potatoes. Amer J of Plant Sci., 3: 1535-1540.
  • Piao, X. C., Chakrabarty, D., Hahn, E. J., Paek, K. Y. 2003. A simple method for mass production of potato microtubers using a bioreactor system. Current Science, 84 (8): 1129-1132.
  • Pruski, K., Duplesis, P., Lewis, T., Astatkie, T., Nowak, J., Struik, P. C. 2001. Jasmonate effect on in vitro tuberization of potato (Solanum tuberosum L.) cultivars under light and dark conditions. Potato Res., 44 (4): 315-325.
  • Pruski, K., Astatkie, T., Nowak, J. 2002. Jasmonate effects on in vitro tuberization and tuber bulking in two potato cultivars (Solanum tuberosum L.) under different media and photoperiod conditions. In vitro Cellular and Developmental Biology-Plant, Vol. 38 (2): 203-209.
  • Rahman, M. H., Islam, R., Hossain, M., Islam, M. S. 2010. Role of sucrose, glucose and maltose on conventional potato micropropagation. J of Agricultural Technology. 6(4): 733-739.
  • Ramarosandratana, A., Harvengt, L., Bouvet, A., Galvayrac, R., Paques, M. 2001. Effects of carbohydrate source, polyethylene glycol and gellan fum concentration on embryonal-suspensor mass (ESM) proliferation and maturation of maritime pine somatic embryos, In Vitro Cell. Dev. Biol.: Plant., 37: 29–34.
  • Sajid, Z. A., F. Aftab. 2009. Effect of thidiazuron (TDZ) on in vitro micropropagation of Solanum tuberosum L. cvs. Desiree and Cardinal. Pak. J. Bot., 41 (4): 1811-1815.
  • Sarekanno, M., Kadaja, J., Kotkas, K., Rosenberg, V., Eremeev, V. 2012. Development of field-grown potato plants derived meristem plants multiplied with different methods. Acra Agriculturae Scandinavica, Section B-Soil and Plant Science, 62: 114-124.
  • Sarker, D. and Naik, P. S. 1998. Effect of inorganic nitrogen nutrition on cytokinin-induced potato microtuber production in vitro. Potato Res., 41: 211-217.
  • Seabrook, J. E. A. 1993. Light effects on the growth and morphogenesis of potato (Solanum tuberosum L.) in vitro: A review. Amer J of Potato Res, 82: 353-367.
  • Sharma, N., Kaur, N., Gupta, A. K.1998. Effects of gibberellic acid and chlorocholine chloride on tuberisation and growth of potato (Solanum tuberosum L.). J of Science of Food and Agriculture, 78 (4): 466-470.
  • Sharma, S., Chanemougasoundharam, A., Sarkar, D., Pandey, S. K. 2005. Saturated carboxylic acid-induced in vitro tuberization in potato (Solanum tuberosum L. ). Potato J., 32 (1-2): 29-36.
  • Sharma, A. K., Venkatasalam, E. P., Singh, R. K. 2011. Micro-tuber production behavior of some commercially important potato (Solanum tuberosum L.) cultivars. Indian J of Agric. Sci., 81 (11): 1008-1013.
  • Simko, I. 1991a. Comparison of the effect of some plant growth inhibitors on rate of in vitro potato tuberization. Pol’nohospodarstvo. 37 (6): 409-418.
  • Simko, I. 1991b. In vitro tuberization after paclobutrazol treatment. Biologia Bratislava, 46 (3), 251-256.
  • Simko, I. 1993. Effects of kinetin, paclobutrazol and their interactions on the micro-tuberization of potato stem segments in vitro in the light. J of Plant Growth Regul., 12 (1) 23-27.
  • Slimmon, T., Souza-Machado, V., Coffin, R. H. 1989. The effect of light on in vitro microtuberization of potato cultivars. Am. Pot. J., 66: 843-848.
  • Srivastava, A. K., Diengdoh L. C., Rai, R., Bag, T. K., Singh, B. P. 2012. In vitro micropropagation and microtuberization potential of selected potato varieties. Indian J of Hill Farming, 25 (2): 14-17.
  • Stallknecht, G. F. 1972. Coumarin-induced tuber formation on excised shoots of Solanum tuberosum L. cultured in vitro. Plant Physiol, 50(3): 412-413.
  • Stallknecht, G. F., Farnsworth, S. 1982. General characteristics of coumarin-induced tuberization of axillary shoots of Solanum tuberosum L. cultured in vitro. Am. Pot. J. 59: 17-32.
  • Suttle, J. C. 1998. Involvement of ethylene in potato microtuber dormancy. Plant Physiology, 118: 843-848.
  • Tabori, K. M., Dobranszki, J., Ferenczy, A. 2000. Effects of culture density on growth and in vitro tuberization capacity of potato plantlets. Acta Agronomica Hungarica, 48 (2): 185-189.
  • Takahashi, K., Fujino, K., Kikuta, Y., Koda, Y. 1994. Expansion of potato cells in response to jasmonic acid. Plant Science, 100 (1): 3-8.
  • Tuğrul S., Samancı, B. 1998. Patates (Solanum tuberosum L.)’te yumru oluşumunu etkileyen faktörler, Akdeniz Üniv. Ziraat Fak. Derg., 11: 117-122.
  • Uranbey, S., Parmaksız, İ., Sancak, C., Çöçü, S., Özcan, S. 2004. Temperature and gelling agents effects on in vitro microtuberization of potato (Solanum tuberosum L.). Biotechnol. & Biotechnol. Eq. 19 (2): 89-94.
  • van den Berg, J. H., Ewing, E. E. 1991. Jasmonates and their role in plant growth and development, with special reference to the control of potato tuberization: a review. Am. Pot. J., 68 (11): 781-794.
  • Vreugdenhil, D., Bindels, P., Reinhoud, P., Klocek, J., Hendriks, T. 1994. Use of the growth retardant tetcyclacis for potato tuber formation in vitro. J. Plant Growth Reg., 14(3): 257-265.
  • Vreugdenhil, D., Sergeeva, L. I. 1999. Gibberellins and tuberization in potato. Potato Res., 42 (3-4): 471-481.
  • Xu, X., van Lammeren A.A., Vermeev, E.,
  • Vreugdenchil, D. 1998. The role of gibberellin, abscisic acid, and sucrose in the regulation of potato tuber formation in vitro. Plant Physiol., 117 (2): 575-584.
  • Yasmin, A., Jalbani, A. A., Mangrio, G. S., Nasreen, A. 2011. Optimization of microtuberization in indigenous potato cv. Desiree. Pak. J. Biotechnol. 8 (2): 39-44.
  • Yeasmin, L., Ahmed, S., Rashid, M. H., Parveen, S., Zeba, N. 2011. Effect of nitrogen and potassium on in vitro development of microtuber of potato (Solanum tuberosum L.). J. Expt. Biosci. 2 (1): 107-112.
  • Zakaria, M., Hossain, M. M., Mian, M. A. K., Hossain, T., Sultana, N. 2007. Effect of nitrogen and potassium on in vitro tuberization of potato. Plant Tissue Cult. & Biotech. 17 (1): 79-85.
  • Zakaria, M., Hossain, M. M., Mian, M. A. K., Hossain, T., Uddin, M. Z. 2008. In vitro tuberization of potato influenced by benzyl adenine and chloro choline chloride. Bangladesh J. Agril. Res. 33 (3): 419-415.
  • Zarrabeitia, A., Lejarcegui, X., Veramendi, J., Mingo-Castel, A. M. 1997. Influence of nitrogen supply on micropropagation and subsequent microtuberization of four potato cultivars. Am. Pot. J. 74 (6): 369-378.
  • Zhang, Z., Zhou, W., Li., H. 2005. The role of GA, IAA and BAP in the regulation of in vitro shoot growth and microtuberization in potato. Acta Physiologiae Plantarum. 27 (2B): 363-369.
Anadolu Tarım Bilimleri Dergisi-Cover
  • ISSN: 1308-8750
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1986
  • Yayıncı: Ondokuz Mayıs Üniv. Ziraat Fak.
Sayıdaki Diğer Makaleler

PATATES (SOLANUM TUBEROSUM L.)’TE IN VITRO ŞARTLARDA MİKROYUMRU ELDE EDİLMESİNİ ETKİLEYEN FAKTÖRLER

Ahmet KUMLAY, Neşet ARSLAN, Canan KAYA

KOYUNCULUK SÜRÜ YÖNETİMİ: KARAMAN İLİ ÖRNEĞİ

Mehmet ŞAHİNLİ

YOZGAT İLİ HALK ELİNDE YETİŞTİRİLEN BEYAZ VE ALACA KAZLARIN ET KALİTE ÖZELLİKLERİ VE BAZI KAN PARAMETRELERİ

Musa SARICA, Mehmet BOZ, Umut YAMAK

TÜRKİYE'NİN AKDENİZ BÖLGESİNDEN ELDE EDİLEN BAZI AĞAÇ YAPRAKLARININ KİMYASAL BİLEŞİMİ VE IN VITRO GAZ ÜRETİM KİNETİKLERİ

Mustafa BOGA

Some wild plants in the cirencester natural flora

Mehmet BASBAG, Sema BASBAG, W. Paul DAVIES, Nicola CANNON, Sara BURBI, A.V. Vijaya BASHKAR, Harriet MOYO, Matthew AXE, Negin MINAEI, Adeola ALO, Karen Rial LOVERA

TÜRKİYE KÖKENLİ BOZ KETEN (Linum bienne Mill.) POPÜLASYONLARININ YAĞ ASİT İÇERİĞİNİN BELİRLENMESİ

Hüseyin UYSAL, Orhan KURT

ADANA’DA PAMUKTA YEŞİLKURT (Helicoverpa armigera (Hübner)) ’UN İNSEKTİSİTLERE KARŞI DAYANIKLILIK ORANLARININ BELİRLENMESİ

Metin KONUŞ, Sakine UĞURLU KARAAĞAÇ

Chemical composition and in vitro gas production kinetics of some tree leaves obtained in the mediterranean region of Turkey

Mustafa BOGA

ELMALARDA SLENDER SPINDLE VE VERTICAL AXIS TERBİYE SİSTEMLERİNİN ERKEN DÖNEM PERFORMANSI ÜZERİNE ETKİLERİ

Emine KÜÇÜKER, Yakup ÖZKAN

DEĞİŞİK GÖLGELEME UYGULAMALARININ SWEET CHARLİE ÇİLEK ÇEŞİDİNDE BÜYÜMEYE ETKİSİNİN KANTİTATİF ANALİZLERLE İNCELENMESİ

Ahmet ÖZTÜRK, Leyla DEMİRSOY