FOTOPERİYOT VE BESİN ÇEŞİDİNİN Drosophila melanogaster Meigen, 1830 (DIPTERA: DROSOPHİLADAE) UN GELİŞİM SÜRESİ, ÖMÜR UZUNLUĞU, VERİM VE EŞEY ORANINA ETKİSİ

Fotoperiyot ve doğal besin çeşidinin Drosophila melanogaster Meigen, 1830’un gelişim süresi, ömür uzunluğu, yumurta verimi ve eşey oranına etkileri incelendi. Denemeler 25±2°C sıcaklık ve % 60-70 Nisbi nem içeren laboratuvar şartlarında, kompozisyonları farklı iki doğal besin tipinde, dokuz farklı fotoperiyot rejiminde (0A;24K, 3A;21K, 6A;18K, 9A;15K, 12A;12K, 15A;9K, 18A;6K, 21A;3K, 24A;0K) yapıldı. Denenen besinlerden bir tipi, 100 cc üzüm sirkesi, 20 gr şeker ve 15 gr bira maya karışımından (sıvı besin), ikinci tipi, 74.2 cc su, 13.5 gr pekmez ve 10 gr mısır unundan (katı besin) hazırlandı. Aynı fotoperiyot şartlarında, iki farklı besin tipinde, D. melanogaster’ in yumurtadan ergine kadar olan gelişim süresi önemli derecede farklılık gösterdi. Tüm farklı fotoperiyot şartlarında gelişim sıvı besinde, katı besindekine göre daha hızlı oldu. Her iki besinde, karanlık periyot süresi arttıkça, gelişim süresi kısaldı. Devamlı aydınlık ve karanlıkta sıvı besindeki ergin öncesi gelişim süresi sırasıyla ortalama 10.9 ve 12.9 gün iken, katı besinde aynı şartlarda söz konusu süre, ortalama olarak sırasıyla 19.3 ve 21.3 gün oldu. Her iki besinde, aynı fotoperiyotta erkek ve dişilerin ergin hayat süresi farklı oldu. Genellikle tüm fotoperiyot şartlarında, erkekler dişilerden daha uzun yaşadı. Aydınlık sürenin artması, her iki eşeyde ergin hayat süresini kısalttı. Denenen iki besin tipinde, dişi başına düşen ortalama ergin birey sayısı farklı oldu. Her iki besin tipinde, aydınlık periyodun artması, dişi başına düşen verimi düşürdü. İki besin tipinde, aynı veya farklı fotoperiyot şartlarında, sonraki döldeki dişi yüzdeleri arasında önemli bir fark tespit edilmedi

EFFECTS OF PHOTOPERIOD AND THE NATURAL FOOD QUALITY ON THE PREADULT DEVELOPMENTAL TIME, ADULT LONGEVITY, FECUNDITY AND SEX-RATIO OF Drosophila melanogaster Meigen, 1830

Effects of photoperiod and the natural food quality on the preadult developmental time, adult longevity, fecundity and sex ratio of D. melanogaster Meigen, 1830 were investigated. Studies were carried out under the laboratory conditions of 25±2°C temperature and 60-70% relative humidity conditions, with two natural food types which have different compositions and with nine different photoperiod regimes ((0L;24D, 3L;21D, 6L;18D, 9L;15D, 12L;12D, 15L;9D, 18L;6D, 21L;3D, 24L;0D). The composition of the first food type( named as fluid food) consisted of grape vineger 100 cc., sugar 20 gr., yeast 15 gr and, composition of the second food one( named as solid food) consisted of water 74.2 cc., molases 13.5 gr., corn flour 10 gr. Under the same photoperiod regime, the developmental time from egg to adult of D. melanogaster showed significant differences at two different food types. Development in the fluid food were faster than the solid one under all different photoperiod regimes. In dark period (short day conditions) caused decrease in the developmental time, in both food conditions. In continues light and dark conditions the average preadult developmental time was 10.9 and 12.9 days in the first food, wheras 19.3 and 21.3 in the second one, respectively. Adult longevities of males and females in each food with the same photoperiod regime were significantly different, generally males were lived longer than females with all photoperiod regimes. Increase in light period decreased adult longevity. The average numbers of adults for each female were different in two different food type. In both food types an increase of the light period decreased the number of average adult induviduals for female. Under the same or the different photoperiod conditions, there were no significant difference between the female ratios in the offspring at two food types. 

___

  • Alemdar, N., 1980. Drosophila’nın Morfolojik, Anatomik Yapısı ve Bazı Sitogenetik Denemeler. Atatürk Üniversitesi Yayınları: 598, Atatürk Üniversitesi Basımevi, Erzurum, 9p.
  • Allemand, R., Cohet, Y., and Davis, J., 1973. Increase in The Longevity of Adult Drosophila Melanogaster Kept in Permanent Darkness. Exp. Geront., 8, 279-283.
  • Argolo, V.M., Bueno, V. H. P., and Silveira, C. P., 2002. Effect of Photoperiod on Reproduction and Longevity of Orius insidiosus (Heteroptera: Anthocoridae). Neotrop. Entomol.,31,2, 257-261.
  • Beaver, L. M., Rush, B. L., Gvakharia, B. O., and Giebultowiez, J. M., 2003. Noncircadian Regulation and Function of Clock Genes Period and Timeless in Oogenesis of Drosophila melanogaster. J. Biol. Rhythms., 18, 6, 463-472.
  • Beck, S. D., 1963. Animal Photoperiodism: Relationship of Daylenght to Animal Growth, Development and Behaviour. Molt Library of Science Series-Ι, New York, 114 pp.
  • Collins, B. H., Rosato, E., Kyriacou, C. P., 2004. Seasonal Behavior in Drosophila melanogaster Requires the Photoreceptors the Circadian Clock and Phospholipase C. Pnas., 101, 7, 1945-1950.
  • Dadour, J.R., Cook, D. F., and Wirth, N., 2001. Rates of Development of Hydrotea rostrata under Summer and Winter (Cyclic and Constant) Temperature Regimes. Med. Vet. Entomol., 15, 2, 177.
  • Fantinou, A. A., Tsitsipis, J. A., and Karandinos, M. G., 1996. Effects of Short and Long Photoperiods on Growth and Development of Sesamia nonargioides (Lepidoptera: Noctuidae). Environ. Entomol., 25,6, 1337-1343.
  • Gemeno, C., and Haynes, K. F., 2001. Impact of Photoperiod on the Sexual Behavior of the Black Cutworm Moth (Lepidoptera: Noctuidae). Entomol. Soc. Ame., 30, 2, 189-195.
  • Giesel, J. T., Lanciani, C. A., and Anderson, J. F., 1989a. Larval Photoperiod and Metabolic Rate in Drosophila melanogaster. Florida. Entomol., 72, 1, 123-128.
  • Giesel, J. T., Lanciani, C. A., and Anderson, J. F., 1989b. Effects of Parental Photoperiod on Metabolic Ratein Drosophila melanogaster. Florida Entomol., 72,3, 499- 503.
  • Han, E., and Gatehouse, G., 1991. Effect of Temperature and Photoperiod on the Calling Behaviour of a Migratory Insect, the Oriental Armyworm Mythimna seperata.
  • HongZhu, D., and Tanaka, S., 2004. Summer Diapause and Nymphal Growth in a Subtropical Cockroach: Response to Changing Photoperiod. Phy. Ent., 29,1, 78-83.
  • Jallow, M. F. A., and Matsumura, M., 2001. Influence of Temperature on the Rate of Development of Helicoverpa armigera (Lepidoptera: Noctuidae). Apply. Entomol. Zool., 36, 4, 427-430.
  • Kaspi, R., Mossinson, S., Drezner, T., Kamensky, B., and Yuval, B., 2002. Effects of Larval Diet on Development Rates and Reproductive Maturation of Male and Female Mediterranean fruit Flies. Physiol. Entomol., 27, 29-38.
  • Kimura, M. T., Yoshida, T., 1995. A Genetic Analysis of Photoperiodic Reproductive Diapause in Drosophila triauraria. Physiol. Entomol., 20, 253-256.
  • Klarsfeld, A., and Rouyer, F., 1998. Effects of Circadian Mutations and LD Periodicity on the Life Span of D. melanogaster. J. Biol. Rhythms., 13, 6, 471-478.
  • Lanciani, C. A., Giesel, J. T., Anderson, J. F., 1990a. Seasonal Change in Metabolic Rate of Drosophila simulans. Comp. Biochemist. Physiol., 4, 501-504.
  • Lanciani, C. A., Giesel, J. T., Anderson, J. F., and Emerson, S. S., 1990b. Photoperiod Induced Changes in Metabolic Response to Temperature in Drosophila melanogaster Meigen. Funct. Ecol., 1, 41-45.
  • Lanciani, C. A., Anderson, J. F., Giesel, J. T., 1991. Effect of Photoperiod on Metabolic Rate in a Subtropical Population of Drosophila melanogaster. Comp. Biochemist. Physiol., 2, 347-348.
  • Lanciani, C. A., Lipp, K. E., and Giesel, J. T., 1992. The Effect of Photoperiod on Cold Tolerance in Drosophila melanogaster. J. Therm. Biol., 17, 3, 147-148.
  • Lombardero, M. J., Ayres, M. P., Ayres, B. D., and Reeve. J. D., 2000. Cold Tolerance of Four Species of Bark Beetle (Coleoptera: Scolytidae) in North America. Environ. Entomol., 29,3, 421-432.
  • Luz, C., Fargues, J., Grunewald, J., 1999. Development of Rhodnius prolixus (Hemiptera: Reduvildae) under Constant and Cyclic Conditions of Temperature and Humudity. Mern. Ins. Oswaldo Cruz., 94, 3, 403-409.
  • Macedo, L. P. M., Souza, B., Carvaiho, C. F., and Ecole, C. C., 2003. Influence of the Photoperiod on Development and Reproduction of Chrysoperia externa (Neuroptera: Chrysopidae). Neutropical. Entomol., 32,1, 91-96.
  • Mathews, P. L., and Stephen, F. M., 1997. Effect of Artificial Diet on Longevity of Adult Parasitoids of Dendroctonus Frontalis ( Coleoptera:Scolytidae). Environ. Entomol., 26, 961-965.
  • Morales-Ramos, J. A., Rojas, M.G., and King, E. G., 1996.Significance of Adult Nutrition and Oviposition Experience on Longevity and Attainment of Full Fecundity of Catolaccus grandis (Hymenoptera: Pteromalidae). Ann. Entomol. Soc. Am., 89, 4, 555-563.
  • Nealis, V. G., Oliver, D., and Tcir, D., 1996. The Diapause Response to Photoperiod in Ontaria Populations of Cotesia melanoscela (Hymenoptera: Braconidae). Can. Entomol., 128, 41-46.
  • Numata, H., and Nakamura, K., 2002. Photoperiodism and Seasonal Adaptations in Some Seed- Sucking Bugs (Heteroptera) in Central Japan. Eur. J. Entomol., 99, 155- 161.
  • Olson, D. M., and Andow, D. A., 1998. Larval Crowding and Adult Nutrition Effects on Longevity and Fecundity of Female Trichogramma nubilale Ertle and Davis (Hymenoptera: Trichogrammatidae). Environ. Entomol., 27, 508-514.
  • Qiu, J., Hardin, P. E., 1996. Developmental State and the Circadian Clock İnteract to Influence the Timing of Eclosion in Drosophila melanogaster.J. Biol. Rhytms., 11, 1, 75-86., 209-214.
  • Rankin, S. M., Dossat, H. B., Garcia, K. M., 1997. Effects of Diet and Mating Status Upon Corpus Allatum Activity, Oocyte Growth and Salivary Gland Size in the Ring- Legged Earwig. Ent.Exp. Apply., 83,1,31-40.
  • Rockstein, M., and Miguel, J., 1976. The Physilogy of Insecta. Ed by Rockstein M., Academic Pres., New York and London, 371-478.
  • Ruberson, J. R., Shen, Y. J., and Kring, T. J., 2000. Photoperiodic Sensitive and Diapause in the Predator Orius insidiosus (Heteroptera: Anthocoridae). Ann. Entomol. Soc. Am. 93,5, 1123-1130.
  • Saunders, D. S., and Gilbert., L. I., 1990. Regulation of Ovarian Diapause in Drosophila melanogaster by Photoperiod and Moderately Low Temperature. J. Insect. Physiol., 36, 3, 195-200.
  • Saunders, D. S., Richard, D. S., Applebaum, S. N., Gilbert, L. I., 1990. Photoperiodic Diapause in Drosophila malanogaster Involves a Block to the Juvenile Hormone Regulation of Ovarian Maturation. Gen.Comp. Endoc., 79, 2, 174-184.
  • Sheeba, V., Sharma, V. K., Shubha, K., Chandrashekaran, M. K., Joshi, A., 2000. The Effect of Different Light Regimes on Adult Life Span in Drosophila melanogaster is Partly Mediated Through Reproductive Output. J. Biol. Rhytms., 15, 5, 380-392.
  • Takeda, M., and Skopik, S. D., 1997. Photoperiodic Time Measurement and Related Physiological Mechanism in Insects and Mites. Ann. Rev. Entomol., 42, 323-349.
  • Thompson, J. J. W., Armitage, S. A. O., and Jothy, M. T. S., 2002. Cuticular Colour Change After Imaginal Eclosion is Time-Constramed: Blacker Beetles Darken Faster.
  • Tommasini, M. G., and Lenteren, J. C. V., 2003. Occurence of Diapause in Orius laevigatus. Bull. Insectol., 56(2) 225-251.
  • Whittaker, M. S., and Kirk, W. D. J., 2004. The Effect of Photoperiod on Walking, Feeding and Oviposition in the Western Flower Thrips. Entomol. Exp. Et. Appl., 111,3, 209-214.