Otizm spektrum bozukluğu olan çocuklarda RELN gen polimorfizminin değerlendirilmesi

Amaç: Otizm spektrum bozukluğu (OSB) sıklığı son yıllarda giderek artmakla birlikte, henüz etiyolojisi tam olarak aydınlatılamamıştır. Bozukluğun etiyolojisinde genetik, nörobiyolojik, ruhsal-toplumsal etkenler, çevresel veya iyat- rojenik nedenlerin rol oynadığına ilişkin birçok hipotez öne sürülmüştür. Bu çalışmada OSB ile RELN gen polimorfiz- mi arasındaki ilişkinin değerlendirilmesi amaçlanmıştır. Yöntem: Çalışmaya DSM-5 tanı ölçütlerine göre OSB tanısı konmuş olan 3-12 yaşları arasındaki 62 hasta ile yaş ve cinsiyet olarak hasta grubuyla eşleştirilmiş 64 sağlıklı çocuk alındı. İki gruptaki olguları sorgulayan Sosyodemografik Veri Formu verildi ve otizm şiddetini değerlendirmek için Çocukluk Otizmini Değerlendirme Ölçeği uygulandı. Reelin geninin iki tek nükleotid polimorfizmi (rs1270519, rs362691), real-time PCR kullanılarak genotiplendi. Bulgular: Çalışmaya alınan 62 OSB’li olgunun 57’si erkek (%92), beşi kız (%8); kontrol grubuna alınan 64 olgunun 52’si erkek (%81), 12’si kız (%19) idi. Hasta grubunun yaş ortalaması 5.54±3.13, kontrol grubunun yaş ortalaması 6.43±4.04 yıldı. Hasta ve kontrol grubu arasında cinsiyet ve yaş açısından anlamlı farklılık saptanmadı. OSB’li hastalarda rs1270519 polimorfizminde sağlıklı kontrollere göre istatistiksel olarak anlamlı fark saptanırken, rs362691 açısından iki grup arasında anlamlı fark saptanmadı. Tartış- ma: Bu çalışmanın sonuçları RELN gen rs1270519 polimorfizminin Türk popülasyonunda OSB ile ilişkili olabilece- ğini göstermektedir. OSB ile RELN arasındaki ilişkinin aydınlatılabilmesi için farklı polimorfizmlerin de çalışıldığı daha geniş çaplı çalışmalara gerek vardır. (Anadolu Psikiyatri Derg 2018; 19(6):599-606)

Evaluation of RELN gene polymorphism in children with autism spectrum disorder

Objective: With increasing frequency of autism spectrum disorder (ASD) in recent years, etiology has not yet been fully elucidated. Multiple hypotheses have been proposed to explain autism etiology including genetic, neurobiology- cal, psychosocial factors, environmental or iatrogenic causes. In this study, it was aimed to evaluate the relationship between OSB and RELN gene polymorphism. Methods: The present study included 62 children with ASD diag- nosed by DSM-5 criteria, aged between 3 and 12 years and 64 age and gender-matched healthy controls. Sociode- mographic Data Form was given in both groups and the Childhood Autism Rating Scale was administered to assess the severity of autism. Two single-nucleotide polymorphisms of reelin gene (rs1270519, rs362691) were genotyped using real-time PCR. Results: Of the 62 OSB cases included in the study, 57 were males (92%) and 5 were females (8%); of the 64 cases included in the control group, 52 were male (81%) and 12 were female (19%). The mean age of the patient group was 5.54±3.13, while the mean age of the control group was 6.43±4.04. There was no significant difference between the patient and control group in terms of sex and age. There was a statistically significant differ ence in rs1270519 polymorphism between ASD patients and healthy controls, but there was no significant differ- ence in terms of rs362691 between the two groups. Discussion: The results of this study show that the RELN gene rs1270519 polymorphism may be associated with ASD in the Turkish population. In order to clarify the relationship between ASD and RELN, there is a need for further studies that is evaluate other polymorphisms. (Anatolian Journal of Psychiatry 2018; 19(6):599-606)

___

American Psychiatric Association and American Psychiatric Association DSM-5 Task Force. Diag- nostic and Statistical Manual of Mental Disorders: DSM-5. Washington, DC: American Psychiatric Association, 2013.

Geier DA, Kern JK, Geier MR. The biological basis of autism spectrum disorders: Understanding causation and treatment by clinical geneticists. Acta Neurobiol Exp 2010; 70:209-226.

Herbert MR. Contributions of the environment and environmentally vulnerable physiology to autismspectrum disorders. Curr Opin Neurol 2010; 23:103-110.

Persico AM, Napolioni V. Autism genetics. Behav Brain Res 2013; 251:95-112.

Çöp E, Yurtbaşı P, Öner Ö, Münir KM. Genetic testing in children with autism spectrum disorders. Anatolian Journal of Psychiatry 2015; 16:426-432.

Sener EF. Association of copy number variations in autism spectrum disorders: a systematic re- view. Chinese Journal of Biology 2014; doi. org/10.1155/2014/713109.

Goldani AA, Downs SR, Widjaja F, Lawton B, Hendren RL. Biomarkers in autism. Front Psychi-atry 2014; 5:100.

Lammert DB, Howell BW. RELN mutations in autism spectrum disorder. Frontiers in Cellular Neuroscience 2016; 10:84. doi:10.3389/fncel.2016.00084.

DeSilva U, D’Arcangelo G, Braden VV, Chen J, Miao GG, Curran T, et al. The human reelin gene: isolation, sequencing and mapping on chromo-some 7. Genome Res 1997; 7:157-164.doi:10.1101/gr.7.2.157.

Ballmaier M, Zoli M, Leo G, Agnati L, Spano P. Preferential alterations in the mesolimbic dopa-mine pathway of heterozygous reeler mice: an emerging animal-based model of schizophrenia. Eur J Neurosci 2002; 15:1197-1205.

Matsuzaki H, Minabe Y, Nakamura K, Suzuki K, Iwata Y, Sekine Y, et al. Disruption of reelin signaling attenuates methamphetamine-induced hyperlocomotion. Eur J Neurosci 2007; 25:3376-3384.

Gong W, Neill D, Lynn M, Justice JJ. Dopamine D1/D2 agonists injected into nucleus accumbens and ventral pallidum differentially affect locomotor activity depending on site. Neuroscience 1999; 93:1349-1358.

Hemby S, Jones G, Justice JJ, Neill D. Con-ditioned locomotor activity but not conditioned place preference following intra-accumbens infu-sions of cocaine. Psychopharmacology (Berl) 1992; 106:330-336.

Barr A, MacLaurin S, Semenova S, Fish K, Markou A. Altered performance of reelin-receptor ApoER2 deficient mice on spatial tasks using the Barnes maze. Behav Neurosci 2007; 121:1101-1105.

Beffert U, Weeber E, Durudas A, Qiu S, Masiulis I, Sweatt J, et al. Modulation of synaptic plasticity and memory by Reelin involves differential splicing of the lipoprotein receptor Apoer2. Neuron 200; 47:567-579.

Torrey EF, Barci BM, Webster MJ, et al. Neurochemical markers for schizophrenia, bipolar disorder, and major depression in postmortem brains. Biol Psychiatry 2005; 57:252-260.

Skaar DA, Shao Y, Haines JL et al. Analysis of the RELN gene as a genetic risk factor for Autism. Molecular Psychiatry 2005;10:563-571.

IMGSAC. Further characterization of the autism susceptibilityl ocus AUTS1 on chromosome 7q. Hum Mol Genet 2001; 10:973-982.doi:10. 1093/hmg/10.9.973.

IMGSAC. A genome wide screen for autism: strong evidence for linkage to chromosomes 2q, 7q and 16p. Am J Hum Genet 2001; 69:570-581.doi:10. 1086/323264.

Schopler E, Reichler RJ, DeVellis RF, Daly K. Toward objective classification of childhood autism: childhood Autism Rating Scale (CARS). J Autism Dev Disord 1980; 10:91-103.

İncekaş S. Çocukluk Otizmini Derecelendirme Ölçeği Geçerlik ve Güvenirlik Çalışması. Yayım-lanmamış Uzmanlık Tezi, İzmir, Dokuz Eylül Üniversitesi Tıp Fakültesi Çocuk ve Ergen Ruh Sağlığı ve Hastalıkları ABD, 2009.

Fatemi SH, Earle JA, McMenomy T. Reduction in Reelin immunoreactivity in hippocampus of sub-jects with schizophrenia, bipolar disorder and major depression. Mol Psychiatry 2000; 5:654-663.

Barr A, Fish K, Markou A. The reelin receptors VLDLR and ApoER2 regulate sensorimotor gating in mice. Neuropharmacology 2007; 52:1114-1123.

Senkov O, Andjus P, Radenovic L, Soriano E, Dityatev A. Neural ECM molecules in synaptic plasticity learning, and memory, Prog Brain Res 2014; 214:53-80.

Boyle MP, Bernard A, Thompson CL, Ng L, Boe A, Mortrud M, Hawrylycz MJ, Jones AR, Hevner RF, Lein ES. Cell-type-specific consequences of Reelin deficiency in the mouse neocortex hippo-campus, and amygdala. J Comp Neurol 2011; 519:2061-2089.

Tissir F, Goffinet AM. Reelin and brain develop-ment. Nat Rev Neurosci 2003; 4:496-505.

Ishii K, Kubo KI, Nakajima K. Reelin and Neuro-psychiatric Disorders. Front Cell Neurosci 2016; 10:229.

Yuen EY, Liu W, Karatsoreos IN, Ren Y, Feng J, McEwen BS, et al. Mechanisms for acute stress-induced enhancement of glutamatergic transmis-sion and working memory. Molecular Psychiatry 2011; 16:156-170. [PubMed: 20458323].

Chang JP, Lane HY, Tsai GE. Attention deficit hyperactivity disorder and N-methyl-D-aspartate (NMDA) dysregulation. Curr Pharm Des 2014; 20:5180-5185. [PubMed: 24410567].

Duffney LJ, Zhong P, Wei J, Matas E, Cheng J, Qin L, et al. Autism-like deficits in Shank3-defi-cient mice are rescued by targeting actin regula-tors. Cell reports 2015; 11:1400-1413.

Lee Y, Kim H, Kim JE, Park JY, Choi J, Lee JE, et al. Excessive D1 dopamine receptor activation in the dorsal striatum promotes autistic-like behavi-ors. Mol Neurobiol 2017; doi: 10.1007/s12035-017-0770-5.

Hettinger JA, Liu X, Hudson ML, Lee A, Cohen IL, Michaelis RC, et al. DRD2 and PPP1R1B (DARPP-32) polymorphisms independently con-fer increased risk for autism spectrum disorders and additively predict affected status in male-only affected sib-pair families. Behav Brain Funct 2012; 8:19.

Fatemi SH, Aldinger KA, Ashwood P, Bauman ML, Blaha CD, Blatt GJ, et al. Consensus paper: pathological role of the cerebellum in autism. Cerebellum 2012; 11:777–807.

Hampson DR, Blatt,GJ. Autism spectrum disor-ders and neuropathology of the cerebellum. Front. Neurosci 2015; 9:420.

Skefos J, Cummings C, Enzer K, Holiday J, Weed K, Levy E, et al. Regional alterations in purkinje cell density in patients with autism. PLoS One 2014; 9:e81255. doi:10.1371/journal.pone.0081255.

Tsai PT, Hull C, Chu Y, Greene-Colozzi E, Sadowski AR, Leech JM, et al. Autistic-like be-haviour and cerebellar dysfunction in Purkinje cell Tsc1mutantmice. Nature 2012; 488:647–651.

Persico AM, D'Agruma L, Maiorano N, Totaro A, Militerni R, Bravaccio C, et al. Reelin gene alleles and haplotypes as a factor predisposing to autistic disorder. Mol Psychiatry 2001; 6(2):150-159.

Zhang H, Liu X, Zhang C, Mundo E, Macciardi F, Grayson, et al. Reelin gene alleles and suscep-tibility to autism spectrum disorders. Mol Psychiatry 2002; 7:1012-1017. doi:10.1038/sj.mp.4001124.

Dutta S, Guhathakurta S, Sinha S, Chatterjee A, Ahmed S, Ghosh S, et al. Reelin gene poly-morphisms in the Indian population: a possible paternal 5’UTR-CGG-repeat-allele effect on autism. Am J Med Genet B Neuropsychiatr Genet 2007; 144B:106-112. doi:10.1002/ajmg.b.30419.

Serajee FJ, Zhong H, Mahbubul Huq AH. Associ-ation of Reelin gene polymorphisms with autism. Genomics 2006; 87:75-83.doi:10.1016/j.ygeno. 2005.09.008

Fu X, Mei Z, Sun L. Association between the g.296596G > A genetic variant of RELN gene and susceptibility to autism in a Chinese Han popula-tion. Genet Mol Biol 2013; 36(4):486-489. doi: 10.1590/S1415-47572013005000037.

Wang Z, Hong Y, Zou L, et al. Reelin gene variants and risk of autism spectrum disorders: an integrated meta-analysis Am J Med Genet B Neuropsychiatr Genet 2014; 165B(2):192-200. doi: 10.1002/ajmg.b.32222.

Chen N, Bao Y, Xue Y, Sun Y, Hu D, Meng S, et al. Meta-analyses of RELN variants in neuro-psychiatric disorders. Behav Brain Res 2017; 332:110-119. doi: 10.1016/j.bbr.2017.05.028.

Abdolmaleky HM, Cheng KH, Russo A, Smith CL, Faraone SV, Wilcox M, et al. Hypermethylation of the reelin (RELN) promoter in the brain of schizophrenic patients: A preliminary report. Ame-rican Journal of Medical Genetics B Neuropsychi-atric Genetics 2005; 134:60-66.

Shifman S, Johannesson M, Bronstein M, Chen SX, Collier DA, Craddock NJ, et al. Genome-wide association identifies a common variant in the reelin gene that increases the risk of schizo-phrenia only in women. PLoS Genet 2008; 4:28.

Kuang WJ, Sun RF, Zhu YS, Li SB. A new single-nucleotide mutation (rs362719) of the reelin (RELN) gene associated with schizophrenia in female Chinese Han Genet Mol Res 2011; 10:1650-1658. doi: 10.4238/vol10-3gmr1343.

Li WQ, Song XQ, Zhang HX, Yang YF, Jiang C, Xiao B, et al. Association study of RELN poly-morphisms with schizophrenia in Han Chinese population. Prog NeuroPsychopharmacol Biol Psychiatry 2011; 35:1505-1511. doi: 10.1016/j.pnpbp.2011.04.007.

Ishizuka K, Fujita Y, Kawabata T, Kimura H, Iwayama Y, Inada T, et al. Rare genetic variants in CX3CR1 and their contribution to the increased risk of schizophrenia and autism spectrum disorders. Transl Psychiatry 2017; 7(8):e1184. doi: 10.1038/tp.2017.173.
Anadolu Psikiyatri Dergisi-Cover
  • ISSN: 1302-6631
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 2000
  • Yayıncı: -
Sayıdaki Diğer Makaleler

İntihar girişiminde bulunanlarda D tipi kişilik, çocukluk çağı travmaları, depresyon, anksiyete, dürtüsellik

Ibrahim YAGCİ, SEMA AVCI, Yasin TAŞDELEN, YÜKSEL KIVRAK

Evaluation of Stroop and Trail-Making Tests performance in university students with internet addiction

ATİLLA TEKİN, AYŞEGÜL YETKİN TEKİN, SERKAN ADIGÜZEL, Hakan AKMAN

Does attention deficit hyperactivity disorder have cardiac arrhythmia potential?

Mengühan ARAZ ALTAY

Otizm spektrum bozukluğu olan çocuklarda RELN gen polimorfizminin değerlendirilmesi

Nilüfer ŞAHİN, Murat KARA, Bilge KARA, Hatice TOPAL

Does increased neutrophil-lymphocyte ratio predict autism spectrum disorder?

Ayşe KUTLU, Nagihan CEVHER BİNİCİ

Şizofreni hastalarının annelerinde bağlanma biçimi ile kan oksitosin düzeyi arasındaki ilişkinin incelenmesi

Kuzeymen BALIKÇI, Orkun AYDIN, İpek SÖNMEZ, AYŞEN ESEN DANACI

Alexithymia is not a good predictor of suicidal ideation in patients with social anxiety disorder

EBRU ALTINTAŞ, MERYEM ÖZLEM KÜTÜK, Ali Evren TUFAN, Harika GÖZÜKARA BAĞ

Evaluation of RELN gene polymorphism in children with autism spectrum disorder

Nilüfer ŞAHİN, Hatice TOPAL, Murat KARA, Bilge KARA

Yüksek nötrofil-lenfosit oranı otizm spektrum bozukluğunu öngörebilir mi?

Nagihan CEVHER BİNİCİ, Ayşe KUTLU

İnternet bağımlılığı olan üniversite öğrencilerinde Stroop ve iz sürme testleri performanslarının değerlendirmesi

Atilla TEKİN, Ayşegül YETKİN, Serkan ADIGÜZEL, Hakan AKMAN