Bal Arılarında (Apis mellifera L.) Beslenmenin Hastalık ve Zararlılarla İlişkisi

Son yıllarda yaşanan yoğun bal arısı (Apis mellifera L.) ölümleri arıcılıkta birçok konunun sorgulanmasına neden olmaktadır. Arı sağlığına yönelik kimyasalların kullanımının beklenen sonuçları tam olarak vermemesi ve arı ürünlerinde kalıntı sorunu gibi yeni sorunları ortaya çıkarması nedeniyle yeni çıkış yolları aranmaktadır. Yapılan çalışmalarda arıların birçok stres faktörleri ile baş edememesinin nedenlerinden birisi olarak arıların yeterli ve kaliteli besin kaynakları ile beslenememesi olduğu düşünülmektedir. Yetersiz beslenme neticesinde, bal arısı immün sisteminin zayıflamasıyla yaygın görülen arı hastalık ve zararlılarına hedef olmaktadırlar. Arıların besin durumunun iyileştirilmesinin, arı sağlığına yönelik zorluklarla mücadelede temel amaç olması gerektiğinin arıcılar tarafından iyi anlaşılması sürdürülebilir arıcılık açısından önemlidir. Bu derleme ile mevcut araştırmalar ve yeni bilgiler ışığında bal arılarında beslemenin önemi ortaya konarak, arıcılar tarafından iyi anlaşılması hedeflenmiştir.

The Relationship Between Nutrition and Diseases and Pests in Honey Bees (Apis mellifera L.)

In recent years, intensive honey bee (Apis mellifera L.) deaths have caused many questions in beekeeping. As the use of chemicals for bee health does not give the expected results and new problems such as residue problems in bee products are emerging, new ways of exit are being sought. In the studies, it is foreseen that the bees cannot cope with many stress factors and that the bees are not fed with sufficient and high-quality food sources. As a result of malnutrition, honey bee is the target of common bee diseases and pests due to decreased the immune system, It is important in terms of sustainable beekeepers to be well understood by beekeepers that improving the nutritional status of bees should be the main objective in fighting against bee health challenges. With this review, in the light of current researches and new information, the importance of feeding honey bees is revealed and it is aimed to be well understood by beekeepers.

Kaynakça

Ababouch, L., A. Chaibi, and F. F. Busta. 1992. Inhibition of bacterial spore growth by fatty acids and their sodium salts. Journal of Food Protection 55 (12): 980-984.

Alaux, C., F. Ducloz, D. Crauser, and Y. Le Conte. 2010. Diet effects on honeybee immunocompetence. Biology Letters 6 (4): 562-565.

Alhaddad, S., and B. Darchen. 1995. The influence of meteorological conditions on the feeding and egg laying of the queen honey bee [Apis mellifera ligustica]. Comptes Rendus de l'Academie des Sciences Serie 3 Sciences de la Vie (France) 318 (2): 245-248.

Allsopp, M., R. Tirado, P. Johnston, D. Santillo, and P. Lemmens. 2014. Plan bee-living without pesticides moving towards ecological farming. Greenpeace International, Amsterdam. Available at https://www. greenpeace.org/international/ publication/7380/plan-beeliving- without-pesticides/Erişim tarihi; 26.12.2019.

Amdam, G. V., K. Norberg, A. Hagen, and S. W. Omholt. 2003. Social exploitation of vitellogenin. Proceedings of the National Academy of Sciences 100 (4): 1799- 1802.

Amdam, G. V., K. Hartfelder, K. Norberg, A. Hagen, and S. W. Omholt. 2004. Altered physiology in worker honey bees (Hymenoptera: Apidae) infested with the mite Varroa destructor (Acari: Varroidae): a factor in colony loss during overwintering? Journal of Economic Entomology 97 (3): 741-747.

Anonymous. 2016. IPBES. The assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. S. G. Potts, V. L. Imperatriz-Fonseca, and H. T. Ngo (Eds.). Secretariat of the Intergovernmental Science-Policy Platform.

Arai, R., K. Tominaga, M. Wu, M. Okura, K. Ito, N. Okamura, H. Onishi, M. Osaki, Y. Sugimura, M. Yoshiyama, and D. Takamatsu. 2012. Diversity of Melissococcus plutonius from Honeybee Larvae in Japan and Experimental Reproduction of European Foulbrood with Cultured Atypical Isolates. PLoS ONE 7 (3): e33708. https://doi.org/10.1371/journal. pone.0033708.

Arking, R., V. Burde, K. Graves, R. Hari, E. Feldman, and A. Zeevi. 2000. Forward and reverse selection for longevity in Drosophila is characterized by alternation of antioxidant gene expression and oxidative damage patterns. Exp. Gerontol. 35: 167-185.

Aronstein, K. A., E. Saldivar, R. Vega, S. Westmiller, and A. E. Douglas. 2012. How Varroa parasitism affects the immunological and nutritional status of the honey bee, Apis mellifera. Insects 3 (3): 601-615.

Arrese, E. L., and J. L. Soulages. 2010. Insect fat body: energy, metabolism, and regulation. Annual Review of Entomology 55: 207-225.

Black, J. 2006. Honey bee nutrition. Review of research and practices. A report for the Rural Industries Research and Developmental Corporation. Australian Government. RIRDC Publication No 06/052, 67 p.

Brodschneider, R., and K. Crailsheim. 2010. Nutrition and health in honey bees. Apidologie 41 (3): 278-294.

Burgess, E. P. J., L. A. Malone, and J. T. Christeller. 1996. Effects of two proteinase inhibitors on the digestive enzyme. J. Insect Physiol. 42: 823-828.

Burrill, R. M., and A. Dietz. 1981. The response of honey bees to variations in solar radiation and temperature. Apidologie 12 (4): 319-328.

Candy, D. J., A. Becker, and B. Wegener. 1997. Coordination and integration of metabolism in insect flight. Comparative Biochemistry and Physiology. 117B: 497-512. http://doi.org/10.1016/S0305-0491(97)00212-5.

Chen, S. L. 2001. The apicultural science in china. China Agricultural Press, Beijing.

Claudianos, C., H. Ranson, R.M. Johnson, S. Biswas, M. A. Schuler, and M. R. Berenbaum, , R. Feyereisen& and J.G. Oakeshott. 2006. A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Insect Molecular Biology 15 (5): 615-636.

Collins, A. M., V. Williams, and J. D. Evans. 2004. Sperm storage and antioxidative enzyme expression in the honey bee, Apis mellifera. Insect Molecular Biology 13 (2): 141-146. https://doi.org/10.1111/j.0962-1075.2004.00469.x.

Corona, M., K. A. Hughes, D. B. Weaver, and G. E. Robinson. 2005. Gene expression patterns associated with queen honey bee longevity. Mechanisms of Ageing and Development 126 (11): 1230-1238. https://doi.org/ 10.1016/j.mad.2005.07.004.

Cox-Foster, D., Y. Chen, R. Underwood, D. R. Tarpy, and J. S. Pettis. 2009. Colony collapse disorder: A descriptive study. PLoS ONE 4: e6481Da silva, J. G. 2018. Food and Agriculture Organization of United Nations. http://www.fao.org/pollination/en/.

DeGrandi-Hoffman, G., and Y. Chen. 2015. Nutrition, immunity and viral infections in honey bees. Current Opinion in Insect Science 10: 170-176.

DeGrandi-Hoffman, G., Y. Chen, E. Huang, and M. H. Huang. 2010. The effect of diet on protein concentration, hypopharyngeal gland development and virus load in worker honey bees (Apis mellifera L.). Journal of insect physiology 56 (9): 1184-1191.

DeGrandi-Hoffman, G., S. L. Gage, V. Corby-Harris, M. Carroll, M. Chambers, H. Graham, C. Meador. 2018. Connecting the nutrient composition of seasonal pollens with changing nutritional needs of honey bee (Apis mellifera L.) colonies. Journal of Insect Physiology 109: 114-124.

Di Pasquale, G., M. Salignon, Y. Le Conte, L. P. Belzunces, A. Decourtye, A. Kretzschmar, C. Alaux. 2013. Influence of pollen nutrition on honey bee health: do pollen quality and diversity matter? PloS one 8 (8): e72016.

Dolezal, A. G., and A. L. Toth. 2018. Feedbacks between nutrition and disease in honey bee health. Current Opinion in Insect Science 26: 114-119.

Dolezal, A. G., J., Carrillo-Tripp, T. M. Judd, W. Allen Miller, B.C. Bonning, and A. L. Toth. 2019. Interacting stressors matter: diet quality and virus infection in honeybee health. Royal Society Open Science 6 (2): 181803. https://dx.doi.org/10.6084/m9.figshare.

Ellis, J. 2007. Colony collapse disorder (CCD) in honey bees. University of Florida, Cooperative Extension Service. Esther, E., S. Smit, M. Beukes, Z. Apostolides, C. W. Pirk, and S. W. Nicolson. 2015. Detoxification mechanisms of honey bees (Apis mellifera) resulting in tolerance of dietary nicotine. Scientific Report. 5: 11779. Farjan, M., M. Dmitryjuk, Z. Lipiński, E. Bierna t-Łopieńska, and K. Żółtowska. 2012. Supplementation of the honey bee diet with vitamin C: The effect on the antioxidative system of Apis mellifera carnica brood at different stages. Journal of Apicultural Research 51 (3): 263-270. https://doi.org/10.3896/ibra.1.51.3.07.

Feldlaufer, M. F., D. A. Knox, W. R. Lusby, and H. Shimanuki. 1993. Antimicrobial activity of fatty acids against Bacillus larvae, the causative agent of American foulbrood disease. Apidologie 24 (2): 95- 99. https://doi.org/10.1051/apido:19930202.

Ferguson, J. A., T. D. Northfield, and L. Lach. 2018. Honey Bee (Apis mellifera) Pollen foraging reflects benefits dependent on ındividual infection status. Microbial Ecology 76 (2): 482-491.

Fleming, J. C., D. R. Schmehl, and J. D. Ellis. 2015. Characterizing the Impact of commercial pollen substitute diets on the level of Nosema spp. in honey bees (Apis mellifera L.). PLoS ONE 10(7): e0132014. https://doi.org/10.1371/journal.pone.0132014

Francis, R. M., and P. Kryger. 2012. Single assay detection of acute bee paralysis virus, kashmir bee virus and ısraeli acute paralysis virus. Journal of Apicultural Science 56: 137-146.

Genersch, E. 2010. American Foulbrood in honeybees and its causative agent, Paenibacillus larvae. Journal of invertebrate pathology 103: S10-S19.

Giacomini, J. J., J. Leslie, D. R. Tarpy, E. C. Palmer-Young, R. E. Irwin, and L. S. Adler. 2018. Medicinal value of sunflower pollen against bee pathogens. Scientific reports 8 (1): 14394.

Gumusova, S. O., H. Albayrak, M. Kurt, and Z. Yazici. 2010. Prevalence of three honey bee viruses in Turkey. Veterinarski Arhiv. 80 (6): 779-785.

Heard, T. A., and J. K. Hendrikz. 1993. Factors influencing flight activity of colonies of the stingless bee Trigona carbonaria (Hymenoptera, Apidae). Australian Journal of Zoology 41 (4): 343-353.

Hendriksma, H. P., C. D. Pachow, and J. C. Nieh. 2019. Effects of essential amino acid supplementation to promote honey bee gland and muscle development in cages and colonies. Journal of Insect Physiology Vol. 117. 103906. https://doi.org/10.1016/j.jinsphys.2019. 103906.

Herbert, E. W., W. E. Bickley, and H. Shimanuki. 1970. The brood-rearing capability of caged honey bees fed dandelion and mixed pollen diets. J. Economic Entomology 63: 215-218.

Herbert, E. W., J. T. Vanderslice, and D. J. Higgs. 1985. Vitamin C enhancement of brood rearing bycaged honeybees fed a chemically defined diet. Archives of Insect Biochemistry and Physiology 2: 29-37.

Hornitzky, M. A. Z. 2003. Fatty acids - An alternative control strategy for honey bee diseases, 23 pp. Barton, ACT: Rural Industries Research and Development Corporation, Australia.

Höcherl, N., R. Siede, I. Illies, H. Gätschenberger, and J. Tautz. 2012. Evaluation of the nutritive value of maize for honey bees. J. Insect Physiology 58: 278-285.

Huang, Z. 2012. Pollen nutrition affects honey bee stress resistance. Terrestrial Arthropod Reviews 5 (2): 175189.

Janmaat, A. F., and M. L. Winston. 2000. The influence of pollen storage area and Varroa jacobsoni Oudemans parasitism on temporal caste structure in honey bees (Apis mellifera L.).Insectes Sociaux 47 (2): 177-182. https://doi.org/10.1007/PL00001698.

Kasper, M. L., A. F. Reeson, D. A. Mackay, and A. D. Austin. 2008. Environmental factors influencing daily foraging activity of Vespula germanica (Hymenoptera, Vespidae) in Mediterranean Australia. Insectes Sociaux. 55 (3): 288-295.

Karacoban, T. 2018. Viral prevalence among social bees in different landscapes. MS thesis. University of Nebraska.

Knox, D. A., H. Shimanuki, and E. W. Herbert. 1971. Diet and the longevity of adult honey bees. J. Econ. Entomol. 64: 1415-1416.

Krishnan, N., D. Kodrik, B. Kludkiewicz, and F. Sehnal. 2009. Glutathione-ascorbic acid redox cycle and thioredoxin reductase activity in the digestive tract of Leptinotarsa decemlineata (Say). Insect Biochemistry and Molecular Biology 39: 180-188. https://doi.org/10.1016/j.ibmb. 2008.11.001.

Kuzyšinová, K., D. Mudroňová, J. Toporčák, L. Molnár, and P. Javorský. 2016. The use of probiotics, essential oils and fatty acids in the control of American foulbrood and other bee diseases. Journal of Apicultural Research 55 (5): 386-395.

Li, C., B. Xu, Y. Wang, Q. Feng, and W. Yang. 2012. Effects of dietary crude protein levels on development, antioxidant status, and total midgut protease activity of honey bee (Apis mellifera ligustica). Apidologie 43 (5): 576-586. https:// doi.org/10.1007/s13592-012-0126-0.

Loper, G. M., and A. C. Cohen. 1987. Amino acid content of dandelion pollen, a honey bee (Hymenoptera: Apidae) nutritional evaluation. J. Econ. Entomol. 80: 14-17. https:// doi.org/10.1093/jee/80.1.14.

Manning, R. 2001. Fatty acids in pollen: a review of their importance for honey bees, Bee World 82 (2): 60-75. https:// doi.org/10.1080/0005772X.2001.11099504.

Mao, W., M. A. Schuler, and M. R Berenbaum. 2013. Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera. Proceedings of the National Academy of Sciences 110 (22): 8842-8846.

McMenamin, A. J., and Flenniken, M. L. 2018. Recently identified bee viruses and their impact on bee pollinators. Current Opinion in Insect Science 26: 120- 129. https:// doi.org/10.1016/j.cois.2018.02.009.

Morawetz, L., H. Köglberger, A. Griesbacher, I. Derakhshifar, K. Crailsheim, R. Brodschneider, and R. Moosbeckhofer. 2019. Health status of honey bee colonies (Apis mellifera) and disease-related risk factors for colony losses in Austria. PloS one 14 (7): e0219293.

Morimoto, T., Y. Kojima, T. Toki, Y. Komeda, M. Yoshiyama, K. Kimura, K. Nirasawa, and T. Kadowaki. 2011. The habitat disruption induces immune‐suppression and oxidative stress in honey bees. Ecology and Evolution 1 (2): 201-217.

Moritz, B., and K. Crailsheim. 1987. Physiology of protein digestion in the midgut of the honeybee (Apis mellifera L.). Journal of Insect Physiology 33 (12): 923-931.

Naug, D. 2009. Nutritional stress due to habitat loss may explain recent honeybee colony collapses. Biological Conservation 142 (10): 2369-2372.

Naug, D., and A. Gibbs. 2009. Behavioral changes mediated by hunger in honeybees infected with Nosema ceranae. Apidologie. 40 (6): 595-599.

Nürnberger, F., S. Härtel, and I. Steffan-Dewenter. 2019. Seasonal timing in honey bee colonies: phenology shifts affect honey stores and varroa infestation levels. Oecologia. 189 (4): 1121-1131.

Oldroyd, B. P. 2007. What’s killing American honey bees? Plos Biology 5 (6): e168. https://doi.org /10.1371/ journal.pbio.0050168.

Oskay, D. 2017. Bal arısı ek beslemesinde sorunlar ve çözüm önerileri. Arıcılık Araştırma Dergisi 9 (1): 1-8.

Page, R. E. Jr, and C. Y. Peng. 2001. Aging and development insocial insects with emphasis on the honey bee, Apis mellifera L. Exp Gerontol. 36 (4-6): 695-711. https://doi.org/10.1016/S0531-5565(00)00236-9.

Paris, L., H. El Alaoui, F. Delbac, and M. Diogon. 2018. Effects of the gut parasite Nosema ceranae on honey bee physiology and behavior. Current Opinion in İnsect Science. 26: 149-154.

Parker, J. D., K. M. Parker, B. H. Sohal, R. S. Sohal, and L. Keller. 2004. Decreased expression of Cu–Zn superoxide dismutase 1 in ants with extreme lifespan. Proceedings of the National Academy of Sciences 101 (10): 3486-3489.

Phillips, J. P., S. D. Campbell, D. Michaud, M. Charbonneau, and A. J. Hilliker. 1989. Null mutation of copper/zinc superoxide dismutase in Drosophila confers hypersensitivity to paraquat and reduced longevity. Proc. Natl. Acad. Sci. (USA) 86: 2761-2765.

Piou, V., J. Tabart, J. L. Hemptinne, and A. Vétillard. 2018. Effect of pollen extract supplementation on the varroatosis tolerance of honey bee (Apis mellifera) larvae reared in vitro. Experimental and Applied Acarology 74 (1): 25-41.

Porrini, M. P., E. G. Sarlo, S. K. Medici, P. M. Garrido, D. P. Porrini, N. Damiani, and M. J. Eguaras. 2011. Nosema ceranae development in Apis mellifera: influence of diet and infective inoculum. Journal of Apicultural Research 50 (1): 35-41.

Potts, S. G., J. C. Biesmeijer, C. Kremen, P. Neumann, O. Schweiger, and W. E. Kunin. 2010. Global pollinator declines: trends, impacts and drivers. Trends in Ecology & Amp; Eevolution 25 (6): 345-353.

Ramsey, S. D., R. Ochoa, G. Bauchan, C. Gulbronson, J. D. Mowery, A. Cohen, and D. Hawthorne. 2019. Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proceedings of the National Academy of Sciences 116 (5): 1792-1801.

Rinderer, T. E., and K. Dell Elliott. 1977. Worker honey bee response to infection with Nosema apis: influence of diet. Journal of Economic Entomology 70 (4): 431- 433.

Schäfer, M. O., V. Dietemann, C. W. W. Pirk, P. Neumann, R. M. Crewe, H. R. Hepburn, J. Tautz, and K. Crailsheim. 2006. Individual versus social pathway to honeybee worker reproduction (Apis mellifera): pollen or jelly as protein source for oogenesis. J. Comp. Physiol. A. 192: 761-768.

Schmidt, L. S., J. O. Schmidt, R. Hima, W. Y. Wang, and L. G. Xu. 1995. Feeding preference and survival of young worker honey bees (Hymenoptera: Apidae) fed rape, sesame, and sunflower pollen. Journal of Economic Entomology 88: 1591-1595.

Seehuus, S. C., K. Norberg, U. Gimsa, T. Krekling, and G. V. Amdam. 2006. Reproductive protein protects functionally sterile honey bee workers from oxidative stress. Proc Natl Acad Sci U S A. 103: 962-967. https://doi.org/10.1073/pnas.0502681103.

Summers, C., and G. W. Felton. 1993. Antioxidant role of dehydroascorbic acid reductase in insects. Biochimica et Biophysica Acta. 1156: 235-238. http://dx.doi.org/ 10.1016/0304-4165(93)90142-U.

Suryanarayanan, S., and D. L. Kleinman. 2016. Vanishing Bees: Science, Politics, and Honeybee Health. Rutgers University Press.

Switanek, M., K. Crailsheim, H. Truhetz, and R. Brodschneider. 2017. Modelling seasonal effects of temperature and precipitation on honey bee winter mortality in a temperate climate. Science of the Total Environment 579: 1581-1587.

Szabo, T. I. 1980. Effect of weather factors on honeybee flight activity and colony weight gain. Journal of Apicultural Research 19 (3): 164-171.

Thuiller, W., S. Lavorel, M. B. Araujo, M. T. Sykes, and I. C. Prentice. 2005. Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences (PNAS) 102 (23): 8245-8250. https://doi.org/10.1073/pnas.0409902102.

Traynor, K. S., K. Rennich, E. Forsgren, R. Rose, J. Pettis, G. Kunkel, S. Madella, J. Evans, D. Lopez, and D. vanEngelsdorp. 2016. Multiyear survey targeting disease incidence in US honey bees. Apidologie 47: 325-347.

Turcatto, A. P., A. P. Lourenço, and D. De Jong. 2018. Propolis consumption ramps up the immune response in honey bees infected with bacteria. Apidologie 49 (3): 287-296.

VanEngelsdorp, D., and M. D. Meixner. 2010. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. Journal of Invertebrate Pathology 103: 80-95.

VanEngelsdorp, D., N. Speybroeck, J. D. Evans, B. K. Nguyen, C. Mullin, M. Frazier, J. Frazier, D. Cox- Foster, Y. Chen, D. R. Tarpy, E. Haubruge, J. S. Pettis, and C. Saegerman. 2010. Weighing risk factors associated with bee colony collapse disorder by classification and regression tree analysis. Journal of Eeconomic Eentomology 103 (5): 1517-1523.

Vicens, N., and J. Bosch. 2000. Weather-dependent pollinator activity in an apple orchard, with special reference to Osmia cornuta and Apis mellifera (Hymenoptera: Megachilidae and Apidae). Environmental Entomology 29 (3): 413-420.

Wehling, K., Ch. Niester, J. J. Boon, M. T. M. Willemse, and R. Wiermann. 1989. p- Coumaric acid – a monomer in the sporopollenin skeleton. Planta 179: 376-380. https://doi.org/10.1007/BF00202338.

Weirich, G. F., A. M. Collins, and V. P. Williams. 2002. Antioxidant enzymes in the honey bee, Apis mellifera. Apidologie 33: 3-14.

Winston, M. L. 1987. The biology of the honey bee. Harvard University Press, Cambridge, Massachusetts.

Zhang, G., W. Zhang, X. Cui, and B. Xu. 2015. Zinc nutrition increases the antioxidant defenses of honey bees. Entomologia Experimentalis et Applicata 156 (3): 201-210.

Zhang, X., J. Dong, H. Wu, H. Zhang, J. Zhang, and E. Ma. 2019. Knockdown of cytochrome P450 CYP6 family genes increases susceptibility to carbamates and pyrethroids in the migratory locust, Locusta migratoria. Chemosphere 223: 48-57. https://doi.org/ 10.1016/j.chemosphere.2019.02.011.

Kaynak Göster

309 178

Arşiv
Sayıdaki Diğer Makaleler

A Research on Expansion and Adoption of the Wheat (Triticum aestivum L.)Varieties Certified as Esperia and Tosunbey: The Example of Polatlı District in Ankara

Celal CEVHER, Özlem BOY, Hasan TATLIDİL

Ateş Yanıklığına Tolerant Ayva Tiplerinin Seleksiyon Islahı: Doğu Marmara Bölgesi

Müge ŞAHİN, Adalet MISIRLI, Hatice ÖZAKTAN

Kars İlinde Sebze Olarak Tüketilen Yabani Bitki Türlerinin Tespiti ve Kullanım Şekilleri

Zakine KADIOĞLU, Kemal ÇUKADAR, Ali KANDEMİR, N. Nazan KALKAN, Hüseyin VURGUN, Veysel DÖNERALP

Çiftçi Koşullarında Yerel Çeşitlere Dayalı Buğday Üretimi

Asuman KAPLAN EVLİCE, AYDIN AKKAYA

Mandalarda [Bubalus bubalis (Linnaeus, 1758)] Termal Stresin Azaltılma Olanakları

Taşkın DEĞİRMENCİOĞLU

Iris sari Schott ex Baker’nin In Vitro Çoğaltım ve Köklendirme Çalışmaları

Selay DOĞAN, Gülat ÇAĞLAR

Effects of Radioiodine (I131) on Mitotic Chromosomes of Root Meristem Cells of Vicia faba L. and Numerical Evaluation

YASEMİN PARLAK, Didem GÖKSOY, Bahattin BOZDAĞ, Ali ÖZDEMİR, Gözde MUTEVELİZADE, KAMURAN AKTAŞ, Gül GÜMÜŞER, Elvan SAYİT, Canan ÖZDEMİR

Bal Arılarında (Apis mellifera L.) Beslenmenin Hastalık ve Zararlılarla İlişkisi

Tuğçe OLGUN, Erkan TOPAL, Nazmiye GÜNEŞ, Devrim OSKAY, Aybike SARIOĞLU

Weed Hosts of Field Dodder (Cuscuta campestris Yunck.) in Northwestern Marmara Region of Turkey

Bahadır ŞİN, Lerzan ÖZTÜRK, Nur SİVRİ, Gürkan AVCI, İzzet KADIOĞLU

Kahramanmaraş’tan Toplanan Prunus divaricata subsp. divaricata Ledeb. Meyvelerinin Biyokimyasal Özellikleri ve Antimikrobiyal Aktivitelerinin Belirlenmesi

NAZAN ÇÖMLEKCİOĞLU, Yusuf Ziya KOCABAŞ, Ashabil AYGAN