Gama Işınlamasının Karpuzda (Citrullus lanatus (Thunb.) Matsum & Nakai) Tohum Çimlenmesine Etkileri ve Etkili Mutasyon Dozunun Belirlenmesi

Bu çalışma, Doğu Karadeniz Bölgesinde lokal olarak yetiştiriciliği yapılan Yalıncak karpuzunda (köy populasyonu) yürütülmesi planlanan mutasyon ıslahı çalışması için “Etkili Mutasyon Dozu” (EMD50)’nun belirlenmesi amacı ile yürütülmüştür. Bu amaçla, karpuz tohumları Co60 kaynağı ile 0, 150, 250 ve 350 Gy dozlarında ışınlanmıştır. Tohum ekimini takip eden 10. ve 30. günde, her doz için ışınlanan tohum ve bunlardan gelişen fidelerde farklı ışın dozlarının çimlenme, kök ve sürgün gelişimleri üzerine olan etkileri incelenerek, EMD50 değeri lineer regresyon analiziyle hesaplanmıştır. Buna göre yapılan uygulama sonucunda 278 Gy EMD50 olarak belirlenirken, 150 Gy’lik uygulamanın kontrol ve diğer ışınlama dozlarına göre ışınlamayı takip eden ilk on günlük sürede çimlenmeyi uyardığı ancak 350 Gy’lik uygulamanın tohum çimlenmesi üzerinde olumsuz etkisi olduğu %46’lık çimlenme oranı ile ortaya konmuştur. Yalıncak genotipinde yürütülecek mutasyon ıslahı çalışmalarında EMD50’nin %10 alt ve üst sınırları göz önüne alınarak 250-305 Gy arasındaki uygulamaların geniş bir varyasyon oluşumunu sağlayacak dozlar olduğu belirlenmiştir.

Effects of Gamma Irradiation on Seed Germination in Watermelon (Citrullus lanatus (Thunb.) Matsum & Nakai) and Determination of Effective Mutation Dose

This research was conducted to determine the “Effective Mutation Dose” (EMD50) for the mutation breeding study planned to be carried out on the Yalıncak watermelon genotype grown locally in the Eastern Black Sea Region. For this purpose, watermelon seeds were irradiated with a 60Co source at doses of 0, 150, 250, and 350 Gy. The EMD50 value was calculated by linear regression analysis by examining the effects of different irradiation doses on germination, root and shoot development of seeds irradiated for each dose on the 10th and 30th days following seed sowing. As a result of the application, 278 Gy was determined as the EMD50, while a 150 Gy application stimulated germination in the first ten days following irradiation compared to control and other doses. In addition, it has been noticed that 350 Gy irradiation had a negative effect on seed germination, with a germination rate of 46%. It was determined that the doses between 250-305 Gy would provide a wide variation in the mutation breeding studies to be carried out on the Yalıncak genotype, considering the 10% lower and upper limits of the EMD50.

___

  • Adekola, O.F., Oluleye, F., 2012. Induced Morphological Variations Among Capsicum annum ‘Tatase’ Mutants. PAT, 8 (2): 50-58 ISSN: 0794-5213.
  • Anonymous, 1977. Manual on mutation breeding. International Atomic Energy Agency, Technical Report Series No:119, Vienna. 290.
  • Büyükdinç, T.D., Kantoğlu, K.Y., Karataş, A., İpek, A., Ellialtioğlu, Ş.Ş., 2019.
  • Determination of Effective Mutagen Dose for Carrot (Daucus carota ssp. sativus var. atrorubens alef and D. carota) Callus Cultures. International Journal of Scientific and Technological Research Vol.5, No.3 ISSN 2422-8702 (Online), DOI: 10.7176/JSTR/5-3-02.
  • Chun, J.I., Kim, H., Jo, Y.D., Kim, J.B., Kang, J.H., 2020. Development of A Mutant Population of Micro-Tom Tomato Using Gamma Irradiation. Plant Breed. Biotech. 8(4):307-315, https://doi.org/10.9787/PBB.2020.8.4.307
  • Çelik, Ö., Ayan, A., Meriç, S., Atak, Ç., 2021. Comparison of Tolerance Related Proteomic Profiles of Two Drought Tolerant Tomato Mutants Improved By Gamma Radiation. Journal of Biotechnology 330: 35–44.
  • Daskalov, S., 1986. Mutation breeding in pepper. Mutation Breeding Review 4:1-26.
  • Ernest, F.P., Noëlle, M.A.H., Godswill, N.N., Thiruvengadam, M., Simon, O.A., Bille, N.H., Martin, B.J., Rebezov, M., Shariati, M.A., 2020. Radiosensitivity of Two Varieties of Watermelon (Citrullus lanatus) to Different Doses of Gamma Irradiation. Brazilian Journal of Botany 43:897–905, https://doi.org/10.1007/s40415-020- 00659-8.
  • Guo, S., Zhao, S., Sun, H., Wang, X., Wu, S., Lin, T., Ren, Y., Gao, L., Deng, Y., Zhang, J., Lu, X., Zhang, H., Shang, J., Gong, G., Wen, C., He, N., Tian, S., Li, M., Liu, J., Wang, Y., Zhu, Y., Jarret, R., Levi, A., Zhang, X., Huang, S., Fei, Z., Liu, W., Xu, Y., 2019. Resequencing of 414 Cultivated and Wild Watermelon Accessions Identifies Selection for Fruit Quality Traits. Nature Genetics 51: 1616–1623 https://doi.org/10.1038/s41588-019-0518- 4.
  • Kantoğlu, K., Y. ve Kunter, B., 2021. Mutasyon Islahı. (N.Y. Mendi ve S. Kazaz, eds). Süs Bitkileri Islahı (Klasik ve Biyoteknolojik Yöntemler). Gece Kitaplığı. ISBN 978- 625-7478-51-9. 145-202 (in Turkish).
  • Kantoğlu, K.Y., Tepe, A., Kunter, B., Fırat, A.F., Peşkircioğlu, H., 2014. Vegetable Crops Breeding by Induced Mutation and A Practical Case Study of Capsicum annuum L. (N.B. Tomlekova, M.I. Kozgar and M.R. Wani, eds) Mutagenesis: exploring genetic diversity in crops. Wageningen Publisher, Holland. 41-56.
  • Kantor, M., Levi, A., 2018. Utilizing Genetic Resources and Precision Agriculture to Enhance Resistance to Biotic and Abiotic Stress In Watermelon. Not Sci Biol, 10(1):1-7.
  • Kökpınar, Ş., Kantoğlu, K.Y., Ellialtıoğlu, Ş.Ş., 2021. Bitkilerde mutagen uygulamalarıyla genetik çeşitliliğin artırılması ve sebze ıslahında kullanımı. (İ. Cengizler, S. Duman. eds) Ziraat, Orman ve Su Ürünlerinde Araştırma ve Değerlendirmeler -1 Chapter 22, Gece Kitaplığı/Gece Publishing, Turkey. 341- 362 (in Turkish).
  • Kurtar, E.S., Balkaya, A., Kandemir, D., 2017. Determination of Semi-lethal (LD50) Doses For Mutation Breeding of Turkish Winter Squash (Cucurbita maxima Duch.) and Pumpkin (Cucurbita moschata Duch.). Fresenius Environ. Bull. 26:3209-3216.
  • Lin, C.Y., Ku, H.M., Chiang, Y.H., Ho, H.Y., Yu, T.A., Jan, F.J., 2012. Development of Transgenic Watermelon Resistant to Cucumber Mosaic Virus and Watermelon Mosaic Virus by Using A Single Chimeric Transgene Construct. Transgenic Re. 21(5):983-93 doi: 10.1007/s11248-011- 9585-8.
  • Liu, L., Gu, Q., Ijaz, R., Zhang, J., Ye, Z., 2016. Generation of Transgenic Watermelon Resistance to Cucumber Mosaic Virus Facilitated by An Effective Agrobacterium-Mediated Transformation Method. Scientia Horticulturae, Volume 205, 32-38.
  • Masuda, M., Agong, S., Tanaka, A., Shikazono, N., Hase, Y., 2004. Mutation Spectrum of Tomato Seed Induced by Radiation with Helium Ion Beams and Coal. Acta Hort. 637, 257-262.
  • Micke, A., Donini, B., 1993. Plant Breeding Principles and Prospects. (M.D. Hayward, N.O. Bosemark, I. Romagosa eds) Induced mutations, CIHEAM, Chapman and Hall, London. 152-162.
  • Mostafa, H.H.A., Wang, H., Shen, D., Qiu, Y., Li, X., 2015. Sprout Differentiation and Mutation Induction of Garlic (Allium sativum L.) callus exposed to gamma radiation. Plant Growth Regul (2015) 75:465–471 DOI 10.1007/s10725-014- 0009-7.
  • MVD, 2022. https:// https://nucleus.iaea.org/sites/mvd/SitePag es/Search.aspx Date of access: 17.05.2022.
  • Pawelkowicz, M., Zielinski, K., Zielinska, D., Plader, W., Yagi, K., Wojcieszeka, M., Siedleckaa, E., Bartoszewski, G., Skarzynska, A., Przybecki, Z., 2016. Next Generation Sequencing and Omics in Cucumber (Cucumis sativus L.) Breeding Directed Research. Plant Science, 242:77- 88.
  • Pino-Nunes, L.E., de O Figueira, A.V., Tulmann Neto, V., Zsögön, A., Piotto, F.A., Silva, J.A., Bernardi, W.F., Peres, L.E.P., 2009. Induced Mutagenesis and Natural Genetic Variation in Tomato ‘Micro-Tom’. (G. Fischer, et al., eds) Proc. IS on Tomato in the Tropics. Acta Hort. 821, 63-71.
  • Presman, M., Alkalai-Tuvia, S., Chalupowicz, D., Beniches, M., Gamliel, A., Fallik, E., 2020. Watermelon Rootstock/Scion Relationships and The Effects of Fruit- Thinning and Stem-Pruning on Yield and Postharvest Fruit Quality. Agriculture 10, 366; doi:10.3390/agriculture10090366.
  • Puripunyavanich, V., 2003. Effect of Gamma Irradiation to Yellow Flesh Watermelon Cv. ''Huay Sai Thong''. International Nuclear Information System (INIS), Report no INIS-TH-063.
  • Qianru, L., Xin, Z., Brecht, J.K., Sims, C.A., Sanchez, T., Dufault, N.S., 2017. Fruit Quality of Seedless Watermelon Grafted onto Squash Rootstocks Under Different Production Systems. J. Sci. Food Agric. 97(14):4704-4711. doi: 10.1002/jsfa.8338.
  • Sarı, N., Solmaz, İ., 2021. Doubled Haploid Production in Watermelon. Methods Mol. Biol. 2289:97-110. doi: 10.1007/978-1- 0716-1331-3_6
  • Sarıçam, Ş., Kantoğlu, K.Y., Ellialtioğlu, Ş.Ş., 2017. Determination of Effective Mutagen Dose for Lettuce (Lactuca sativa var. longifolia cv. Cervantes) Seeds. Eurasian Journal of Agricultural Research, 1(2): 108-114.
  • Spencer-Lopes, M.M., Forster, B.P., Jankuloski, L., 2018. Manual on Mutation Breeding Third Edition. Plant Breeding and Genetics Subprogramme Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture Vienna, Austria. 299.
  • Tadmor, Y., Katzir, N., Meir, A., Yaniv-Yaakov, A., Sa’ar, U., Baumkoler, F., Lavee, T., Lewinsohn, E., Schaffer, A., Burger, J., 2007. Induced Mutagenesis to Augment The Natural Genetic Variability of Melon (Cucumis melo L.). Israel Journal of Plant Sciences, 55:159–169.
  • Taner, Y., Beşirli, G., Kunter, B., Yanmaz, R., 2004. Determining Effective Radiation Mutagen Dose for Garlic (Allium sativum L.). Bahçe 33 (1-2): 95-99 (in Turkish).
  • Tepe, A., Fırat, A.F., Taner, K.Y., Kunter, B., Peşkircioğlu, H., Ekiz, H., 2003. Sera Demre 8 Biber Çeşidinde Mutasyon Islahına Yönelik Olarak Etkili Mutasyon Dozunun Belirlenmesi. IV. Ulusal Bahçe Bitkileri Kongresi. 8-12 Eylül 2003, Antalya-Türkiye, 365-366 (in Turkish).
  • Tian, S., Jiang, L., Gao, Q., Zhang, J., Zong, M., Zhang, H., Ren, Y., Guo, S., Gong, G., Liu, F., Xu, Y., 2017. Efficient CRISPR/Cas9- Based Gene Knockout in Watermelon. Plant Cell Rep 36:399–406, DOI 10.1007/s00299-016-2089-5.
  • Tokat, M., Acar, R., Özköse, M., 2020. Bazı Karpuz (Citrullus lanatus) Genotiplerinde Gözlemlenen Bitkisel ve Tarımsal Özelliklerdeki Varyasyonlar. Bahri Dağdaş Bitkisel Araştırma Dergisi (Journal of Bahri Dagdas Crop Research) 9 (1): 43-50, e-ISSN: 2687-3753.
  • Tomlekova, N., Todorova, V., Daskalov, S., 2007. Creating Variation in Pepper (Capsicum annum L ) Through Induced Mutation. Plant Sciences, 44 : 44 – 47.
  • TUIK 2022. https://data.tuik.gov.tr/Bulten/Index?p=Bi tkisel-Uretim-Istatistikleri-2021- 37249&dil=1#:~:text=Buna%20g%C3%B 6re%20%C3%BCretim%20miktarlar%C4 %B1%202021,9%20milyon%20ton%20ol arak%20ger%C3%A7ekle%C5%9Fti. Date of access: 10.04.2022.
  • Van Harten, A. M., 2002. Mutation Breeding of Vegetatively Propagated Ornamentals. In (Ed: A. Vainstein) Breeding for Ornamentals: Classical and Molecular Approaches. Kluwer Academic Publishers, Boston. 155-127.
  • Van Harten, A.M., 1998. Mutation Breeding Theory and Practical Applications. Cambridge University Press, London. 353.
  • Velkov, N., Tomlekova, N.B., Sarsu, F., 2016. Sensitivity of Watermelon Variety Bojura to Mutant Agents 60Co and EMS. J. BioSci. Biotech, 5(1): 105-110.
  • Yarar, G., Kocak, M., Denli, N., Cavagnaro, P.F., Mehtap, Y., 2021 Determination of The Effective Radiation Dose for Mutation Breeding in Purple Carrot (Daucus carota L.) and Possible Variations Formed. Molecular Biology Reports https://doi.org/10.1007/s11033-021- 06618-0.
  • Zafar, S.A., Aslam, M., Albaqami, M., Ashraf, A., Hassan, A., Iqbal, J., Maqbool, A., Naeem, M., Al-Yahyai, R., Zuan, A.T.K., 2022. Gamma Rays Induced Genetic Variability in Tomato (Solanum lycopersicum L.) Germplasm. Saudi Journal of Biological Sciences 29, 3300– 3307.