Vitaminlerin Nanoenkapsülasyonu ve Nanoenkapsüle Vitaminlerin Sağlık Üzerine Etkileri

Vitaminler insan hayatı için önemli mikro besin öğeleridir ve eksikliklerinde çeşitli rahatsızlıklar ortaya çıkar. Bu nedenle besinler ile birlikte alınmasının yanı sıra takviye olarak veya fonksiyonel gıdalara ilave edilerek tüketime sunulurlar. Vitaminler genel olarak ısıya, ışığa, pH’a ve oksijene duyarlı yapılardır. Bu kimyasal reaktivitelerinden ötürü, vitaminlerin enkapsülasyonu gıda formlarında kullanımı uygunlaştırarak, biyoerişilebilirlik ve biyoyararlanımı olumlu yönde etkilemektedir. Vitaminlerin nanoenkapsülasyonu konusunda yapılan çalışmalar son yıllarda artmıştır. Nanoenkapsülasyon ile vitamin yapılarının termal stabiliteleri arttırılabilir, çözünürlük parametreleri değiştirilebilir, ısıya ve ışığa olan duyarlılık azaltılarak biyoaktif maddelere olumlu özellikler kazandırılabilir. Bu olumlu özellikler ile maddelerin gıda, kozmetik vb. alanlarda kullanımı kolaylaştırılır. Nanoenkapsülasyon ile bu olumlu özellikleri sağlamak için birçok farklı metodoloji ve teknik mevcut olmasına karşın maliyet, zaman, kimyasal kompozisyon uyumluluğu ve istenilen etkilere karşı duyarlılık konuları incelenerek efektif çözümlemelerin yapılması gereken bir alandır. Vitaminlerin nanoenkapsülasyonu uzun süre depolama ömrü, ısıl dayanıklılık, ışığa karşı duyarlılığı azaltma, farklı pH koşullarında stabilititeyi sağlama, biyoerişimi ve biyoyararlılığı arttırmak gibi olumlu özellikler sağlamaktadır. Bu derlemede, son yıllarda giderek artan araştırma ve geliştirme çalışmalarının olduğu nanoenkapsülasyon konusunda vitaminlerin nanoenkapsülasyonu ile insan sağlığına etkisi incelenmiştir. Sonuç olarak vitaminlerin farklı metodolojiler ile nanoenkapsülasyon işlemi uygulandığı ve farklı parametreler ile incelendiği, biyoyararlanım ve biyoerişilebilirlik konusunda olumlu etkilerini destekleyen çalışmaların olmasına karşın çalışmaların arttırılması gerektiği sonucuna varılmıştır.

Nanoencapsulation of Vitamins and Health Effects of Nanoencapsulated Vitamins

Vitamins are important micronutrients for human life, and various diseases may occur in their deficiencies. For this reason, besides being taken with foods, they are offered for consumption as supplements or by adding them to functional foods. Vitamins are generally sensitive to heat, light, pH and oxygen. Because of this chemical reactivity, the encapsulation of vitamins can positively affect bioaccessibility and bioavailability, making them suitable for their use in food compositions. Studies on the nanoencapsulation of vitamins have increased in recent years. With nanoencapsulation, the thermal stability of their chemical structures can be increased, their solubility can be changed, their sensitivity to heat and light can be reduced or altered. Thus, bioactive compounds can be given positive properties. With these positive properties, substances can be used in food, cosmetics, etc. Although there are many different methods to provide these positive properties with nanoencapsulation, it is an area where effective analysis should be done by examining the issues of cost, time, chemical composition compatibility and sensitivity to the desired effects. Nanoencapsulation of vitamins provides long-term shelf life, thermal resistance, decreasing sensitivity to light, stability under different pH conditions, providing positive effects by increasing bioaccessibility and bioavailability. The main purpose of this review is to present the effect of nanoencapsulation on vitamins and the health benefits of encapsulated vitamins. For this purpose, literature was reviewed, and finally it was concluded that vitamins are subjected to nanoencapsulation with different methods and examined with different parameters. Although there are studies supporting their positive effects on bioaccessability and bioavailability, further conclusive research is needed.

___

  • [1] Henry, C.J. (2010). Functional foods. European Journal of Clinical Nutrition, 64(7), 657-659.
  • [2] Götze, F., Brunner, T.A. (2019). Sustainability and country-of-origin: How much do they matter to consumers in Switzerland? British Food Journal, 122(1), 291-308.
  • [3] Lucas, B.F., Costa, J.A.V., Brunner, T.A. (2021). Superfoods: Drivers for Consumption. Journal of Food Products Marketing, 27(1), 1-9.
  • [4] Wildman, R.E.C. (2016). Handbook of Nutraceuticals and Functional Foods. CRC Press, 1-23p.
  • [5] Bigliardi, B. Galati, F. (2013). Innovation trends in the food industry: The case of functional foods. Trends in Food Science & Technology, 31(2), 118-129.
  • [6] Akbari Alavijeh, M., Sarvi, M.N., Ramazani Afarani, Z. (2019). Modified montmorillonite nanolayers for nano-encapsulation of biomolecules. Heliyon, 5(3), e01379.
  • [7] Shahidi, F. (2009). Nutraceuticals and functional foods: Whole versus processed foods. Trends in Food Science & Technology, 20(9), 376-387.
  • [8] Walia, N., Dasgupta, N., Ranjan, S., Ramalingam, C., Gandhi, M. (2019). Food-grade nanoencapsulation of vitamins. Environmental Chemistry Letters, 17(2), 991-1002.
  • [9] Cursino, A.C.T., Zanotelli, N. C., Giona, R.M., de Oliveira Basso, R.L., Mezalira, D.Z. (2021). Multifunctional food supplements based on layered zinc hydroxide salts intercalated with vitamin anions and adsolubilized with vanillin. Journal of Food Science and Technology, 58(10), 3963-3971.
  • [10] Mougin, K., Bruntz, A., Severin, D., Teleki, A. (2016). Morphological stability of microencapsulated vitamin formulations by AFM imaging. Food Structure, 9, 1-12.
  • [11] Katouzian, I. Jafari, S.M. (2017). Nanoencapsulation of Vitamins (ss. 145-181). Academic Press.
  • [12] Gonnet, M., Lethuaut, L., Boury, F. (2010). New trends in encapsulation of liposoluble vitamins. Journal of Controlled Release, 146(3), 276-290.
  • [13] Abbasi, A., Emam-Djomeh, Z., Mousavi, M.A.E., Davoodi, D. (2014). Stability of vitamin D (3) encapsulated in nanoparticles of whey protein isolate. Food Chemistry, 143, 379-383.
  • [14] Singh, T., Shukla, S., Kumar, P., Wahla, V., Bajpai, V.K. (2017). Application of nanotechnology in food science: perception and overview. Frontiers in Microbiology, 8, 1501.
  • [15] Panigrahi, S.S., Syed, I., Sivabalan, S., Sarkar, P. (2019). Nanoencapsulation strategies for lipid-soluble vitamins. Chemical Papers, 73(1), 1-16.
  • [16] Glowka, E., Stasiak, J., Lulek, J. (2019). Drug delivery systems for vitamin D supplementation and therapy. Pharmaceutics, 11(7), 347.
  • [17] Ezhilarasi, P.N., Karthik, P., Chhanwal, N., Anandharamakrishnan, C. (2013). Nanoencapsulation techniques for food bioactive components: A review. Food and Bioprocess Technology, 6(3), 628-647.
  • [18] Zhu, Y., Li, C., Cui, H., Lin, L. (2020). Encapsulation strategies to enhance the antibacterial properties of essential oils in food system. Food Control, 107856.
  • [19] Khorasani, S., Danaei, M., Mozafari, M.R. (2018). Nanoliposome technology for the food and nutraceutical industries. Trends in Food Science & Technology, 79, 106-115.
  • [20] Bender, M.L. Komiyama, M. (2012). Cyclodextrin Chemistry (Vol. 6). Springer Science & Business Media.
  • [21] Seidi, F., Shamsabadi, A.A., Amini, M., Shabanian, M., Crespy, D. (2019). Functional materials generated by allying cyclodextrin-based supramolecular chemistry with living polymerization. Polymer Chemistry, 10(27), 3674-3711.
  • [22] Tian, B., Liu, Y., Jiayue, L. (2020). Smart stimuli-responsive drug delivery systems based on cyclodextrin: A review. Carbohydrate Polymers, 251, 116871.
  • [23] Martínez Rivas, C.J., Tarhini, M., Badri, W., Miladi, K., Greige-Gerges, H., Nazari, Q.A., Galindo Rodríguez, S.A., Román, R.Á., Fessi, H., Elaissari, A. (2017). Nanoprecipitation process: From encapsulation to drug delivery. International Journal of Pharmaceutics, 532(1), 66-81.
  • [24] Ghorani, B. Tucker, N. (2015). Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology. Food Hydrocolloids, 51, 227-240.
  • [25] Katouzian, I. Jafari, S.M. (2016). Nano-encapsulation as a promising approach for targeted delivery and controlled release of vitamins. Trends in Food Science & Technology, 53, 34-48.
  • [26] Garti, N. McClements, D.J. (2012). Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals. Elsevier.
  • [27] Tadros, T., Izquierdo, P., Esquena, J., Solans, C. (2004). Formation and stability of nano-emulsions. Advances in Colloid and Interface Science, 108-109, 303-318.
  • [28] Singh, H. (2016). Nanotechnology applications in functional foods; opportunities and challenges. Preventive Nutrition and Food Science, 21(1), 1-8.
  • [29] Wang, S., Su, R., Nie, S., Sun, M., Zhang, J., Wu, D., Moustaid-Moussa, N. (2014). Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. The Journal of Nutritional Biochemistry, 25(4), 363-376.
  • [30] Polcz, M.E. Barbul, A. (2019). The Role of Vitamin A in Wound Healing. Nutrition in Clinical Practice: Official Publication of the American Society for Parenteral and Enteral Nutrition, 34(5), 695-700.
  • [31] Soares, M.M., Silva, M.A., Garcia, P.P.C., Silva, L.S. da, Costa, G.D. da, Araújo, R.M.A., Cotta, R.M.M. (2019). Efect of vitamin A suplementation: A systematic review. Ciencia & Saude Coletiva, 24(3), 827-838.
  • [32] Blaner, W.S. (2019). Vitamin A Signaling and Homeostasis in obesity, diabetes, and metabolic disorders. Pharmacology & therapeutics, 197, 153-178.
  • [33] Zinder, R., Cooley, R., Vlad, L.G., Molnar, J.A. (2019). Vitamin A and wound healing. Nutrition in Clinical Practice: Official Publication of the American Society for Parenteral and Enteral Nutrition, 34(6), 839-849.
  • [34] Saleem, S., Kazmi, I., Ahmad, A., Abuzinadah, M.F., Samkari, A., Alkrathy, H.M., Khan, R. (2020). Thiamin Regresses the Anticancer Efficacy of Methotrexate in the Amelioration of Diethyl Nitrosamine-Induced Hepatocellular Carcinoma in Wistar Strain Rats. Nutrition and Cancer, 72(1), 170-181.
  • [35] Wiley, K.D. Gupta, M. (2020). Vitamin B1 Thiamine Deficiency. In StatPearls. StatPearls Publishing.
  • [36] Suwannasom, N., Kao, I., Pruß, A., Georgieva, R., Bäumler, H. (2020). Riboflavin: The Health Benefits of a Forgotten Natural Vitamin. International Journal of Molecular Sciences, 21(3), 950.
  • [37] Peechakara, B.V. Gupta, M. (2020). Vitamin B2 (Riboflavin). In StatPearls. StatPearls Publishing.
  • [38] Thakur, K., Tomar, S.K., Singh, A.K., Mandal, S., Arora, S. (2017). Riboflavin and health: A review of recent human research. Critical Reviews in Food Science and Nutrition, 57(17), 3650-3660.
  • [39] Fricker, R.A., Green, E.L., Jenkins, S.I., Griffin, S.M. (2018). The Influence of Nicotinamide on Health and Disease in the Central Nervous System. International Journal of Tryptophan Research: IJTR, 11, 1178646918776658.
  • [40] Wolak, N., Zawrotniak, M., Gogol, M., Kozik, A., Rapala-Kozik, M. (2017). Vitamins B1, B2, B3 and B9-occurrence, biosynthesis pathways and functions in human nutrition. Mini Reviews in Medicinal Chemistry, 17(12), 1075-1111.
  • [41] Kondjoyan, A., Portanguen, S., Duchène, C., Mirade, P.S., Gandemer, G. (2018). Predicting the loss of vitamins B3 (niacin) and B6 (pyridoxamine) in beef during cooking. Journal of Food Engineering, 238, 44-53.
  • [42] Hill, L.J., Williams, A.C. (2017). Meat ıntake and the dose of vitamin B3 - nicotinamide: Cause of the causes of disease transitions, health divides, and health futures? International Journal of Tryptophan Research: IJTR, 10, 1178646917704662.
  • [43] Makarov, M.V., Trammell, S.A.J., Migaud, M.E. (2019). The chemistry of the vitamin B3 metabolome. Biochemical Society transactions, 47(1), 131-147.
  • [44] Savvidou, S. (2014). Pellagra: A non-eradicated old disease. Clinics and Practice, 4(1), 637.
  • [45] Brown, M.J., Ameer, M.A., Beier, K. (2020). Vitamin B6 Deficiency. In StatPearls. StatPearls Publishing.
  • [46] Ahmad, I., Mirza, T., Qadeer, K., Nazim, U., Vaid, F.H. (2013). Vitamin B6: Deficiency diseases and methods of analysis. Pakistan Journal of Pharmaceutical Sciences, 26(5), 1057-1069.
  • [47] Sijilmassi, O. (2019). Folic acid deficiency and vision: A review. Graefe’s Archive for Clinical and Experimental Ophthalmology, 257(8), 1573-1580.
  • [48] Greenberg, J.A., Bell, S.J., Guan, Y., Yu, Y.-H. (2011). Folic Acid supplementation and pregnancy: More than just neural tube defect prevention. Reviews in Obstetrics & Gynecology, 4(2), 52-59.
  • [49] Gristan, Y.D. Moosavi, L. (2020). Folinic Acid. In StatPearls. StatPearls Publishing.
  • [50] Scaglione, F. Panzavolta, G. (2014). Folate, folic acid and 5-methyltetrahydrofolate are not the same thing. Xenobiotica; the Fate of Foreign Compounds in Biological Systems, 44(5), 480-488.
  • [51] Ferrazzi, E., Tiso, G., Di Martino, D. (2020). Folic acid versus 5- methyl tetrahydrofolate supplementation in pregnancy. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 253, 312-319.
  • [52] Chapeau, A.L., Hamon, P., Rousseau, F., Croguennec, T., Poncelet, D., Bouhallab, S. (2017). Scale-up production of vitamin loaded heteroprotein coacervates and their protective property. Journal of Food Engineering, 206, 67-76.
  • [53] Watanabe, F., Yabuta, Y., Tanioka, Y., Bito, T. (2013). Biologically active vitamin B12 compounds in foods for preventing deficiency among vegetarians and elderly subjects. Journal of Agricultural and Food Chemistry, 61(28), 6769-6775.
  • [54] Watanabe, F., Yabuta, Y., Bito, T., Teng, F. (2014). Vitamin B₁₂-containing plant food sources for vegetarians. Nutrients, 6(5), 1861-1873.
  • [55] Estevinho. (2020). Nanocarriers loaded with nutraceuticals and bioactive ingredients (vitamins and minerals). Nanotechnology in the Beverage Industry, 373-412.
  • [56] Frei, B., England, L., Ames, B.N. (1989). Ascorbate is an outstanding antioxidant in human blood plasma. Proceedings of the National Academy of Sciences of the United States of America, 86(16), 6377-6381.
  • [57] Morelli, M.B., Gambardella, J., Castellanos, V., Trimarco, V., Santulli, G. (2020). Vitamin C and cardiovascular disease: An update. Antioxidants, 9(12), 1227.
  • [58] Wyckelsma, V.L., Venckunas, T., Brazaitis, M., Gastaldello, S., Snieckus, A., Eimantas, N., Baranauskiene, N., Subocius, A., Skurvydas, A., Pääsuke, M., Gapeyeva, H., Kaasik, P., Pääsuke, R., Jürimäe, J., Graf, B.A., Kayser, B., Place, N., Andersson, D.C., Kamandulis, S., Westerblad, H. (2020). Vitamin C and E treatment blunts sprint interval training-induced changes in inflammatory mediator-, calcium-, and mitochondria-related signaling in recreationally active elderly humans. Antioxidants (Basel), 9(9), 879.
  • [59] Tada, A. Miura, H. (2019). The relationship between vitamin C and periodontal diseases: A systematic review. International Journal of Environmental Research and Public Health, 16(14), 2472.
  • [60] Kashiouris, M.G., L’Heureux, M., Cable, C.A., Fisher, B.J., Leichtle, S.W., Fowler, A.A. (2020). The emerging role of vitamin C as a treatment for sepsis. Nutrients, 12(2), 292.
  • [61] Kuhn, S.O., Meissner, K., Mayes, L.M., Bartels, K. (2018). Vitamin C in sepsis. Current Opinion in Anaesthesiology, 31(1), 55-60.
  • [62] Marik, P.E. (2018). Vitamin C for the treatment of sepsis: The scientific rationale. Pharmacology & Therapeutics, 189, 63-70.
  • [63] Hemilä, H. Chalker, E. (2013). Vitamin C for preventing and treating the common cold. The Cochrane Database of Systematic Reviews, 1, CD000980.
  • [64] Sheraz, M.A., Khan, M.F., Ahmed, S., Kazi, S.H., Ahmad, I. (2015). Stability and stabilization of ascorbic acid. Household and Personal Care Today, 10, 22-25.
  • [65] Comunian, T., Babazadeh, A., Rehman, A., Shaddel, R., Akbari-Alavijeh, S., Boostani, S., Jafari, S.M. (2020). Protection and controlled release of vitamin C by different micro/nanocarriers. Critical Reviews in Food Science and Nutrition, 62(12), 3301-3322.
  • [66] Goltzman, D., Mannstadt, M., Marcocci, C. (2018). Physiology of the calcium-parathyroid hormone-vitamin D axis. Frontiers of Hormone Research, 50, 1-13.
  • [67] Feige, J., Moser, T., Bieler, L., Schwenker, K., Hauer, L., Sellner, J. (2020). Vitamin D supplementation in multiple sclerosis: A critical analysis of potentials and threats. Nutrients, 12(3), 783.
  • [68] Sassi, F., Tamone, C., D’Amelio, P. (2018). Vitamin D: Nutrient, hormone, and immunomodulator. Nutrients, 10(11), 1656.
  • [69] Theodoratou, E., Tzoulaki, I., Zgaga, L., Ioannidis, J.P.A. (2014). Vitamin D and multiple health outcomes: Umbrella review of systematic reviews and meta-analyses of observational studies and randomised trials. BMJ (Clinical Research Ed.), 348, g2035.
  • [70] Lin, Z. Li, W. (2016). The roles of vitamin D and Its analogs in inflammatory diseases. Current Topics in Medicinal Chemistry, 16(11), 1242-1261.
  • [71] Carlberg, C., Muñoz, A. (2020). An update on vitamin D signaling and cancer. In Seminars in Cancer Biology. Academic Press.
  • [72] Al-Hashimi, N. Abraham, S. (2020). Cholecalciferol. In StatPearls. StatPearls Publishing.
  • [73] Brandi, M.L. (2010). Indications on the use of vitamin D and vitamin D metabolites in clinical phenotypes. Clinical Cases in Mineral and Bone Metabolism, 7(3), 243-250.
  • [74] Grossmann, R.E. Tangpricha, V. (2010). Evaluation of vehicle substances on vitamin D bioavailability: A systematic review. Molecular Nutrition & Food Research, 54(8), 1055-1061.
  • [75] Lee, G.Y. Han, S.N. (2018). The role of vitamin E in immunity. Nutrients, 10(11), 1614.
  • [76] Lewis, E.D., Meydani, S.N., Wu, D. (2019). Regulatory role of vitamin E in the immune system and inflammation. IUBMB Life, 71(4), 487-494.
  • [77] Kim, H.K. Han, S.N. (2019). Vitamin E: Regulatory role on gene and protein expression and metabolomics profiles. IUBMB Life, 71(4), 442-455.
  • [78] Abraham, A., Kattoor, A.J., Saldeen, T., Mehta, J.L. (2019). Vitamin E and its anticancer effects. Critical Reviews in Food Science and Nutrition, 59(17), 2831-2838.
  • [79] Yang, C.S., Luo, P., Zeng, Z., Wang, H., Malafa, M., Suh, N. (2020). Vitamin E and cancer prevention: Studies with different forms of tocopherols and tocotrienols. Molecular Carcinogenesis, 59(4), 365-389.
  • [80] He, J., Shi, H., Huang, S., Han, L., Zhang, W., Zhong, Q. (2018). Core-shell nanoencapsulation of α-tocopherol by blending sodium oleate and rebaudioside A: Preparation, characterization, and antioxidant activity. Molecules (Basel, Switzerland), 23(12).
  • [81] Ozturk, B., Argin, S., Ozilgen, M., McClements, D.J. (2015). Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural biopolymers: Whey protein isolate and gum arabic. Food Chemistry, 188, 256-263.
  • [82] Montenegro, L. (2014). Nanocarriers for skin delivery of cosmetic antioxidants. Journal of Pharmacy & Pharmacognosy Research, 2(4), 73-92.
  • [83] Teleki, A., Hitzfeld, A., Eggersdorfer, M. (2013). 100 Years of Vitamins: The Science of Formulation is the Key to Functionality. KONA Powder and Particle Journal, 30, 144-163.
  • [84] Zhang, W.G., Liang, J.H., & Cai, Y.J. (2011). Preparation of vitamin E liposomes by the thin film method and study on its leakage rate. In Advanced Materials Research (Vol. 236, pp. 2207-2210). Trans Tech Publications Ltd.
  • [85] Ohta, Y., Torii, H., Yamasaki, T., Niwa, T., Majima, Y., Ishiguro, I. (1997). Preventive action of vitamin E-containing liposomes on cataractogenesis in young adult rats fed a 25% galactose diet. Journal of Ocular Pharmacology and Therapeutics: The Official Journal of the Association for Ocular Pharmacology and Therapeutics, 13(6), 537-550.
  • [86] Booth, S.L. (2009). Roles for vitamin K beyond coagulation. Annual Review of Nutrition, 29, 89-110.
  • [87] Fusaro, M., Gallieni, M., Rizzo, M.A., Stucchi, A., Delanaye, P., Cavalier, E., Moysés, R.M.A., Jorgetti, V., Iervasi, G., Giannini, S., Fabris, F., Aghi, A., Sella, S., Galli, F., Viola, V., Plebani, M. (2017). Vitamin K plasma levels determination in human health. Clinical Chemistry and Laboratory Medicine (CCLM), 55(6), 789-799.
  • [88] Schwalfenberg, G.K. (2017). Vitamins K1 and K2: The emerging group of vitamins required for human health. Journal of Nutrition and Metabolism, 2017, 6254836.
  • [89] Işcan, Y., Wissing, S.A., Hekimoğlu, S., Müller, R.H. (2005). Solid lipid nanoparticles (SLN) for topical drug delivery: Incorporation of the lipophilic drugs N,N-diethyl-m-toluamide and vitamin K. Die Pharmazie, 60(12), 905-909.
  • [90] Otsuka, M. Hirano, R. (2011). Bone cell activity responsive drug release from biodegradable apatite/collagen nano-composite cements—In vitro dissolution medium responsive vitamin K2 release. Colloids and Surfaces. B, Biointerfaces, 85(2), 338-342.
  • [91] Yang, G.G., Zhang, H., Zhang, D.Y., Cao, Q., Yang, J., Ji, L.N., Mao, Z.W. (2018). Cancer-specific chemotherapeutic strategy based on the vitamin K3 mediated ROS regenerative feedback and visualized drug release in vivo. Biomaterials, 185, 73-85.
  • [92] Chen, L., Bai, G., Yang, R., Zang, J., Zhou, T., Zhao, G. (2014). Encapsulation of β-carotene within ferritin nanocages greatly increases its water-solubility and thermal stability. Food Chemistry, 149, 307-312.
  • [93] Chen, J., Li, F., Li, Z., McClements, D.J., Xiao, H. (2017). Encapsulation of carotenoids in emulsion-based delivery systems: Enhancement of β-carotene water-dispersibility and chemical stability. Food Hydrocolloids, 69, 49-55.
  • [94] Resende, D., Costa Lima, S.A., Reis, S. (2020). Nanoencapsulation approaches for oral delivery of vitamin A. Colloids and Surfaces. B, Biointerfaces, 193, 111121.
  • [95] AlZahabi, S., Sakr, O.S., Ramadan, A.A. (2019). Nanostructured lipid carriers incorporating prickly pear seed oil for the encapsulation of vitamin A. Journal of Cosmetic Dermatology, 18(6), 1875-1884.
  • [96] Celebioglu, A. Uyar, T. (2020). Design of polymer-free Vitamin-A acetate/cyclodextrin nanofibrous webs: Antioxidant and fast-dissolving properties. Food & Function, 11(9), 7626-7637.
  • [97] Xu, X., Peng, S., Bao, G., Zhang, H., Yin, C. (2021). β-cyclodextrin inclusion complexes with vitamin A and its esters: A comparative experimental and molecular modeling study. Journal of Molecular Structure, 1223, 129001.
  • [98] Kaur, K., Jindal, R., Jindal, D. (2020). Controlled release of vitamin B1 and evaluation of biodegradation studies of chitosan and gelatin based hydrogels. International Journal of Biological Macromolecules, 146, 987-999.
  • [99] Juveriya Fathima, S., Fathima, I., Abhishek, V., Khanum, F. (2016). Phosphatidylcholine, an edible carrier for nanoencapsulation of unstable thiamine. Food Chemistry, 197, 562-570.
  • [100] Azevedo, M.A., Bourbon, A.I., Vicente, A.A., Cerqueira, M.A. (2014). Alginate/chitosan nanoparticles for encapsulation and controlled release of vitamin B2. International Journal of Biological Macromolecules, 71, 141-146.
  • [101] Jin, B., Zhou, X., Li, X., Lin, W., Chen, G., Qiu, R. (2016). Self-assembled modified soy protein/dextran nanogel induced by ultrasonication as a delivery vehicle for riboflavin. Molecules (Basel, Switzerland), 21(3), 282.
  • [102] Zhang, P., Zhao, S.R., Li, J.X., Hong, L., Raja, M.A., Yu, L.J., Liu, C.G. (2016). Nanoparticles based on phenylalanine ethyl ester-alginate conjugate as vitamin B2 delivery system. Journal of Biomaterials Applications, 31(1), 13-22.
  • [103] Pérez-Masiá, R., López-Nicolás, R., Periago, M.J., Ros, G., Lagaron, J.M., López-Rubio, A. (2015). Encapsulation of folic acid in food hydrocolloids through nanospray drying and electrospraying for nutraceutical applications. Food Chemistry, 168, 124-133.
  • [104] Bakhshi, P.K., Nangrejo, M.R., Stride, E., Edirisinghe, M. (2013). Application of electrohydrodynamic technology for folic acid encapsulation. Food and Bioprocess Technology, 6(7), 1837-1846.
  • [105] Zhang, J., Field, C.J., Vine, D., & Chen, L. (2015). Intestinal uptake and transport of vitamin B12-loaded soy protein nanoparticles. Pharmaceutical Research, 32(4), 1288-1303.
  • [106] Akbari Alavijeh, M., Sarvi, M.N., Ramazani Afarani, Z. (2017). Properties of adsorption of vitamin B12 on nanoclay as a versatile carrier. Food Chemistry, 219, 207-214.
  • [107] Peng, H., Chen, S., Luo, M., Ning, F., Zhu, X., Xiong, H. (2016). Preparation and self-assembly mechanism of bovine serum albumin–citrus peel pectin conjugated hydrogel: A potential delivery system for vitamin C. Journal of Agricultural and Food Chemistry, 64(39), 7377-7384.
  • [108] Zhou, W., Liu, W., Zou, L., Liu, W., Liu, C., Liang, R., Chen, J. (2014). Storage stability and skin permeation of vitamin C liposomes improved by pectin coating. Colloids and Surfaces. B, Biointerfaces, 117, 330-337.
  • [109] Güney, G., Kutlu, H.M., Genç, L. (2014). Preparation and characterization of ascorbic acid loaded solid lipid nanoparticles and investigation of their apoptotic effects. Colloids and Surfaces. B, Biointerfaces, 121, 270-280.
  • [110] Lipka, D., Gubernator, J., Filipczak, N., Barnert, S., Süss, R., Legut, M., Kozubek, A. (2013). Vitamin C-driven epirubicin loading into liposomes. International Journal of Nanomedicine, 8, 3573-3585.
  • [111] Haham, M., Ish-Shalom, S., Nodelman, M., Duek, I., Segal, E., Kustanovich, M., Livney, Y.D. (2012). Stability and bioavailability of vitamin D nanoencapsulated in casein micelles. Food & Function, 3(7), 737-744.
  • [112] Luo, Y., Teng, Z., Wang, Q. (2012). Development of zein nanoparticles coated with carboxymethyl chitosan for encapsulation and controlled release of vitamin D3. Journal of Agricultural and Food Chemistry, 60(3), 836-843.
  • [113] Walia, N., Dasgupta, N., Ranjan, S., Chen, L., Ramalingam, C. (2017). Fish oil based vitamin D nanoencapsulation by ultrasonication and bioaccessibility analysis in simulated gastro-intestinal tract. Ultrasonics Sonochemistry, 39, 623-635.
  • [114] da Silva, J.L.G., Passos, D.F., Bernardes, V.M., Cabral, F.L., Schimites, P.G., Manzoni, A.G., de Oliveira, E.G., de Bona da Silva, C., Beck, R.C.R., Jantsch, M.H., Maciel, R.M., Leal, D.B.R. (2019). Co-nanoencapsulation of vitamin D3 and curcumin regulates inflammation and purine metabolism in a model of arthritis. Inflammation, 42(5), 1595-1610.
  • [115] Sharifan, P., Khoshakhlagh, M., Khorasanchi, Z., Darroudi, S., Rezaie, M., Safarian, M., Vatanparast, H., Afshari, A., Ferns, G., Ghazizadeh, H., Ghayour Mobarhan, M. (2020). Efficacy of low-fat milk and yogurt fortified with encapsulated vitamin D3 on improvement in symptoms of insomnia and quality of life: Evidence from the SUVINA trial. Food Science & Nutrition, 8(8), 4484-4490.
  • [116] Park, S.J., Garcia, C.V., Shin, G.H., Kim, J.T. (2017). Development of nanostructured lipid carriers for the encapsulation and controlled release of vitamin D3. Food Chemistry, 225, 213-219.
  • [117] Mohammadi, M., Ghanbarzadeh, B., Hamishehkar, H. (2014). Formulation of nanoliposomal vitamin d3 for potential application in beverage fortification. Advanced Pharmaceutical Bulletin, 4(Suppl 2), 569-575.
  • [118] Guttoff, M., Saberi, A.H., McClements, D.J. (2015). Formation of vitamin D nanoemulsion-based delivery systems by spontaneous emulsification: Factors affecting particle size and stability. Food Chemistry, 171, 117-122.
  • [119] Saberi, A.H., Fang, Y., McClements, D.J. (2013). Fabrication of vitamin E-enriched nanoemulsions by spontaneous emulsification: Effect of propylene glycol and ethanol on formation, stability, and properties. Food Research International, 54(1), 812-820.
  • [120] Ling, L., Ismail, M., Shang, Z., Hu, Y., Li, B. (2020). Vitamin E-based prodrug self-delivery for nanoformulated irinotecan with synergistic antitumor therapeutics. International Journal of Pharmaceutics, 577, 119049.
  • [121] Hategekimana, J., Masamba, K.G., Ma, J., Zhong, F. (2015). Encapsulation of vitamin E: Effect of physicochemical properties of wall material on retention and stability. Carbohydrate Polymers, 124, 172-179.
  • [122] Lv, S., Gu, J., Zhang, R., Zhang, Y., Tan, H., & McClements, D. J. (2018). Vitamin E encapsulation in plant-based nanoemulsions fabricated using dual-channel microfluidization: formation, stability, and bioaccessibility. Journal of Agricultural and Food Chemistry, 66(40), 10532-10542.
  • [123] Shea, T.B., Ortiz, D., Nicolosi, R.J., Kumar, R., Watterson, A.C. (2005). Nanosphere-mediated delivery of vitamin E increases its efficacy against oxidative stress resulting from exposure to amyloid beta. Journal of Alzheimer’s Disease, 7(4), 297-301.
  • [124] Eid, M., Sobhy, R., Zhou, P., Wei, X., Wu, D., Li, B. (2020). β-cyclodextrin- soy soluble polysaccharide based core-shell bionanocomposites hydrogel for vitamin E swelling controlled delivery. Food Hydrocolloids, 104, 105751.
  • [125] Li, B., Jiang, Y., Liu, F., Chai, Z., Li, Y., Li, Y., Leng, X. (2012). Synergistic effects of whey protein–polysaccharide complexes on the controlled release of lipid-soluble and water-soluble vitamins in W1/O/W2 double emulsion systems. International Journal of Food Science & Technology, 47(2), 248-254.
  • [126] Marsanasco, M., Márquez, A.L., Wagner, J.R., del V. Alonso, S., Chiaramoni, N.S. (2011). Liposomes as vehicles for vitamins E and C: An alternative to fortify orange juice and offer vitamin C protection after heat treatment. Food Research International, 44(9), 3039-3046.
  • [127] Li, P., Chen, Y., Chen, C., Liu, Y. (2019). Amphiphilic multi-charged cyclodextrins and vitamin K co-assembly as a synergistic coagulant. Chemical Communications, 55(78), 11790-11793.
Akademik Gıda-Cover
  • ISSN: 1304-7582
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2003
  • Yayıncı: Sidas Medya Limited Şirketi