Farklı Sıcaklık ve Mikrodalga Güçlerinde Kurutulan Elma Dilimlerinin Kurutma Özellikleri

Bu çalışmada, farklı mikrodalga güçleri ve farklı sıcak havada kurutulan elma dilimlerinin kuruma özellikleri araştırılmış ve karşılaştırılmıştır. Mikrodalga gücünün artışına bağlı olarak kuruma hızı ve efektif diffüzyon katsayısında artış, kuruma süresinde ise azalma tespit edilmiştir. Farklı mikrodalga güçlerinde nem yayılımları 9.72x10-10 – 2.36x10-9 m2 s−1 aralığında, sıcak hava ile kurutmada ise 3.80×10−10 – 7.40x10−10 m2 s−1 arasında bulunmuştur. Sıcak hava kurutma yönteminde farklı güçlerde uygulanan mikrodalga kurutma yöntemine göre daha uzun kuruma süresi, daha yavaş kuruma hızı ve daha düşük efektif diffüzyon katsayısı elde edilmiştir. Sıcaklık artışına bağlı olarak kurutma hızı ve efektif diffüzyon katsayısında artış tespit edilmiştir. Farklı mikrodalga güçlerinde kurutma eğrileri en iyi Page modeliyle, sıcak havalı kurutmada ise Parabolik modelle tanımlanmıştır.

Drying Properties of Apple Slices at Different Temperatures and Microwave Powers

In this study, the drying properties of apple slices dried at different microwave powers and in different hot air were investigated and compared. Depending on the increase in microwave power, an increase in drying rate and effective moisture diffusivity and a decrease in drying time were determined. Effective moisture diffusivity were found in the range of 9.72x10-10 - 2.36x10-9 m2 s-1 at different microwave powers, and between 3.80×10-10 - 7.40x10-10 m2 s-1 in hot air drying. Longer drying time, slower drying rate and less effective moisture diffusivity were obtained from drying hot air when compared to different microwave powers. Depending on the increase in temperature, an increase in drying rate and effective moisture diffusivity was determined. While Page model has the best fit for the drying curves at different microwave powers, the drying curves of hot air dried apple slices were defined by Parabole model.

___

  • [1] Moscetti, R., Raponi, F., Ferri, S., Colantoni, A., Monarca, D., Massantini, R. (2018). Real-time monitoring of organic apple (var. Gala) during hot-air drying using near-infrared spectroscopy. Journal of Food Engineering, 222, 139-150.
  • [2] FAO. (2018). Food and Agricultural Organization statistica database. Retrieved from http://faostat3.fao.org/download/Q/QC/E (15.03.2022).
  • [3] Polat, A., Taskin, O., Izli, N., Asik, B.B. (2019). Continuous and intermittent microwave‐vacuum drying of apple: Drying kinetics, protein, mineral content, and color. Journal of Food Process Engineering, 42(3), e13012.
  • [4] Alibas, I., Zia, M.P., Yilmaz, A., Asik, B.B. (2020). Drying kinetics and quality characteristics of green apple peel (Mallus communis L. var. “Granny Smith”) used in herbal tea production. Journal of Food Processing and Preservation, 44(2), e14332.
  • [5] Tepe, T.K., Tepe, B. (2020). The comparison of drying and rehydration characteristics of intermittent-microwave and hot-air dried-apple slices. Heat and Mass Transfer, 56(11), 3047-3057.
  • [6] Kaya, Z.G. (2019). Ultrases Ön Işlemiyle Sıcak Hava ve Mikrodalga Sistemlerinde Kurutulan Elma Dilimlerinin Kalite Özelliklerinin Belirlenmesi. Yüksek Lisans Tezi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı, Isparta.
  • [7] Winiczenko, R., Kaleta, A., Górnicki, K. (2021). Application of a moga algorithm and ann in the optimization of apple drying and rehydration processes. Processes, 9(8), 1415.
  • [8] Kaya, A., Aydın, O., Demirtaş, C. (2007). Drying kinetics of red delicious apple. Biosystems Engineering, 96(4), 517-524.
  • [9] Yoğurtçu, H. (2014). Mikrodalga fırında limon kurutma: kinetiği ve modellenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 26(1), 27-33.
  • [10] Amanor‐Atiemoh, R., Zhou, C., Abdullaleef Taiye, M., Sarpong, F., Wahia, H., Amoa‐Owusu, A., Chen, L. (2020). Effect of ultrasound‐ethanol pretreatment on drying kinetics, quality parameters, functional group, and amino acid profile of apple slices using pulsed vacuum drying. Journal of Food Process Engineering, 43(2), e13347.
  • [11] Karacaoğlu, C., Gürsoy, O., Yılmaz, Y. (2016). Ultrasonikasyon destekli vakum impregnasyon emdirme tekniği ile muamele işleminin kivi dilimlerinin kuruma kinetiği üzerine etkisi. Akademik Gıda, 14(3), 256-266.
  • [12] Yıldız, Z., Gökayaz, L. (2020). Raflı doğal konvektif güneş enerjili kurutucuda elma kuruma kinetiğinin incelenmesi. Engineering Sciences, 15(1), 34-42.
  • [13] Santacatalina, J.V., Contreras, M., Simal, S., Cárcel, J.A., Garcia-Perez, J.V. (2016). Impact of applied ultrasonic power on the low temperature drying of apple. Ultrasonics Sonochemistry, 28, 100-109.
  • [14] Şen, S., Aydin, F. (2020). Experimental investigation of drying kinetics of apple with hot air, microwave and ultrasonic power. Sādhanā, 45(1), 1-10.
  • [15] da Silva, W.P., Galvão, I.B., e Silva, C.M., de Farias Aires, J.E., de Figueirêdo, R.M.F. (2020). Empirical model for describing continuous and intermittent drying kinetics of apple pieces. Heat and Mass Transfer, 56(4), 1263–1274.
  • [16] Tepe, F.B. (2020). Hünnap (Z. Jujuba Mill) Meyvelerinin Farklı Olgunlaşma Evrelerinde ve Kurutma Sürecinde Bazı Kalite Parametrelerinin Kinetik Analizi. Doktora Tezi. Pamukkale Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı, Denizli.
  • [17] Yapici, B. (2017). Radyo Frekansı Kurutma Yöntemi İle Elma Cipsi Üretimi. Yüksek Lisans Tezi. Mersin Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı, Mersin.
  • [18] Khan, M.I.H., Nagy, S.A., Karim, M.A. (2018). Transport of cellular water during drying: An understanding of cell rupturing mechanism in apple tissue. Food Research International, 105, 772-781.
  • [19] Martynenko, A., Zheng, W. (2016). Electrohydrodynamic drying of apple slices: Energy and quality aspects. Journal of Food Engineering, 168, 215-222.
  • [20] Ando, Y., Hagiwara, S., Nabetani, H., Sotome, I., Okunishi, T., Okadome, H., Tagawa, A. (2019). Effects of prefreezing on the drying characteristics, structural formation and mechanical properties of microwave-vacuum dried apple. Journal of Food Engineering, 244, 170-177.
  • [21] Şen, S., Aydin, F. (2020). Experimental investigation of drying kinetics of apple with hot air, microwave and ultrasonic power. Sādhanā, 45(1), 1-10.
  • [22] Horuz, E., Bozkurt, H., Karataş, H., Maskan, M. (2018). Simultaneous application of microwave energy and hot air to whole drying process of apple slices: drying kinetics, modeling, temperature profile and energy aspect. Heat and Mass Transfer, 54(2), 425-436.
  • [23] Dai, J.W., Xiao, H.W., Zhang, L.H., Chu, M.Y., Qin, W., Wu, Z.J., Yin, P.F. (2019). Drying characteristics and modeling of apple slices during microwave intermittent drying. Journal of Food Process Engineering, 42(6), e13212.
  • [24] Krokida, M.K., Kiranoudis, C.T., Maroulis, Z.B., Marinos-Kouris, D. (2000). Drying related properties of apple. Drying Technology, 18(6), 1251-1267.
  • [25] Onwude, D.I., Hashim, N., Janius, R.B., Nawi, N.M., Abdan, K. (2016). Modeling the thin‐layer drying of fruits and vegetables: A review. Comprehensive Reviews in Food Science and Food Safety, 15(3), 599-618.
  • [26] Beaudry, C., Raghavan, G.S.V., Rennie, T.J. (2003). Microwave finish drying of osmotically dehydrated cranberries. Drying Technology, 21(9), 1797-1810.
  • [27] Soysal, Y., Öztekin, S., Eren, Ö. (2006). Microwave drying of parsley: modelling, kinetics, and energy aspects. Biosystems Engineering, 93(4), 403-413.
  • [28] Demiray, E., Seker, A, Tulek, Y. (2017). Drying kinetics of onion (Allium cepa L.) slices with convective and microwave drying. Heat and Mass Transfer, 53(5), 1817-1827.
  • [29] Zarein, M., Samadi, S.H., Ghobadian, B. (2015). Investigation of microwave dryer effect on energy efficiency during drying of apple slices. Journal of the Saudi Society of Agricultural Sciences, 14(1), 41-47.
  • [30] Bi, J., Yang, A., Liu, X., Wu, X., Chen, Q., Wang, Q., Wang, X. (2015). Effects of pretreatments on explosion puffing drying kinetics of apple chips. LWT-Food Science and Technology, 60(2), 1136-1142.
  • [31] Tepe, F.B., Tepe, T.K., Ekinci, A. (2022). Impact of air temperature on drying characteristics and some bioactive properties of kiwi fruit slices. Chemical Industry & Chemical Engineering Quarterly, 28(2), 151-159.
  • [32] Zhang, Z., Liu, Z., Liu, C., Li, D., Jiang, N., Liu, C. (2016). Effects of ultrasound pretreatment on drying kinetics and quality parameters of button mushroom slices. Drying Technology, 34(15), 1791-1800.
  • [33] Crank, J. (1975). The mathematics of diffusion. Clarendon Press, Oxford.
  • [34] Torki-Harchegani, M,, Ghasemi-Varnamkhasti, M., Ghanbarian, D., Sadeghi, M., Tohidi, M. (2016). Dehydration characteristics and mathematical modelling of lemon slices drying undergoing oven treatment. Heat and Mass Transfer, 52(2), 281-289.
  • [35] Çelen, S., Haksever, A., Moralar, A. (2017). The effects of microwave energy to the drying of apple (gala) slices. Karaelmas Science Engineering Journal, 7(1), 228-236.
  • [36] Özbek, B., Dadali, G. (2007). Thin-layer drying characteristics and modelling of mint leaves undergoing microwave treatment. Journal of Food Engineering, 83(4), 541-549.
  • [37] Azimi-Nejadian, H., Hoseini, S.S. (2019). Study the effect of microwave power and slices thickness on drying characteristics of potato. Heat and Mass Transfer, 55(10), 2921-2930.
  • [38] Aghilinategh, N., Rafiee, S., Gholikhani, A., Hosseinpur, S., Omid, M., Mohtasebi, S.S., Maleki, N. (2015). A comparative study of dried apple using hot air, intermittent and continuous microwave: evaluation of kinetic parameters and physicochemical quality attributes. Food Science and Nutrition, 3(6), 519-526.
  • [39] Çelen, S., Kahveci, K. (2013). Microwave drying behaviour of apple slices. Proc Inst Mech Eng, Part E: Journal of Process Mechanical Engineering, 227(4), 264-272.
  • [40] İzli, N., Polat, A. (2018). Intermittent microwave drying of apple slices: drying kinetics, modeling, rehydration ratio and effective moisture diffusivity. Journal of Agriculture Science, 26(1), 32-41.
  • [41] Kumar, V., Sharma, H.K., Singh, K. (2016). Mathematical modeling of thin layer microwave drying of taro slices. Journal of Institution of Engineers (India), Ser A 97(1), 53–61.
  • [42] Sacilik, K., Elicin, A.K. (2006). The thin layer drying characteristics of organic apple slices. Journal of Food Engineering, 73(3), 281-289.
  • [43] Zarein, M., Samadi, S.H., Ghobadian, B. (2013). Kinetic drying and mathematical modeling of apple slices on dehydration process. Journal of Food Processing Technology, 4(7), 1-4.
  • [44] Beigi, M. (2016). Hot-air drying of apple slices: dehydration characteristics and quality assessment. Heat and Mass Transfer, 52(8), 1435-1442.
  • [45] Velić, D.A., Planinić, M., Tomas, S., Bilić, M. (2004). Influence of airflow velocity on kinetics of convection apple drying. Journal of Food Engineering, 64(1), 97-102.
  • [46] Wang, Z., Sun, J., Liao, X., Chen, F., Zhao, G., Wu, J., Hu, X. (2007). Mathematical modeling on hot air drying of thin layer apple pomace. Food Research International, 40(1), 39-46.
  • [47] Aghbashlo, M., Kianmehr, M.H., Samimi-Akhijahani, H. (2008). Influence of drying conditions on the effective moisture diffusivity, energy of activation and energy consumption during the thin-layer drying of berberis fruit (Berberidaceae). Energy Conversion and Management, 49(10), 2865-2871.
Akademik Gıda-Cover
  • ISSN: 1304-7582
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2003
  • Yayıncı: Sidas Medya Limited Şirketi