D-Alluloz Üretim Yöntemleri

Nadir şekerler, alternatif tatlandırıcılar olarak sağlık açısından oldukça faydalı olmaları ve endüstriyel açıdan ekonomik değerlerinin yüksek olmaları sebebiyle büyük ilgi görmektedir. Nadir şekerlerin doğada çok sınırlı miktarlarda bulunması, bitkilerden elde edilen yaygın şekerlerin enzimatik, kimyasal veya diğer yollarla nadir şekerlere dönüştürülmesine yönelik çalışmaları teşvik etmiştir. Nadir şekerler arasında çok önemli bir yere sahip olan D-alluloz, sakkaroza çok yakın bir tatlılığa sahip olması ve düşük kalorisi ile dikkat çeken bir şekerdir. Kandaki glikoz seviyesini düşürme, insülin direncini iyileştirme, vücuttaki yağ birikimini azaltma ve ateş düşürme gibi birçok biyolojik fonksiyonu düzenleme özelliğine sahip olması, bunun yanı sıra, yüksek çözünürlüğe ve gıda dokusu üzerinde olumlu etkilere sahip olması, bu şekerin gıda işlemede kullanımını daha cazip hale getirmektedir. D-alluloz "sindirilemeyen karbonhidrat" olarak bilinmektedir. Birçok meyve ve içecekte ve bazı tahıl ürünlerinde doğal olarak bulunmaktadır. Günümüzde D-alluloz, bitkiden ekstraksiyon, kimyasal sentez, enzimatik dönüşüm gibi birçok yöntemle üretilebilmekte ve bazı gıda maddelerinin üretiminde güvenle kullanılabilmektedir. Bu derlemede, günümüze kadar geliştirilmiş ve uygulanmış olan D-alluloz üretim yöntemleri açıklanmış, bu yöntemler arasındaki farklar ve birbirlerine göre avantajları ve dezavantajları tartışılmıştır.

Production Methods of D-Allulose

Rare sugars are of great interest as alternative sweeteners because they are beneficial for human health and have a high industrial value. The existence of rare sugars in nature in very limited quantities has encouraged studies to convert common sugars obtained from plants into rare sugars by enzymatic, chemical or other methods. D-allulose, which has a very important place among rare sugars, is a sugar that stands out with its low calorie and sweetness very close to sucrose. It has the ability to regulate many biological functions such as lowering blood glucose level, improving insulin resistance, reducing fat accumulation in the body and reducing fever, as well as having high solubility and positive effects on food tissue, making the use of this sugar more efficient in food processing. D-allulose is known as "indigestible carbohydrate". It occurs naturally in many fruits and beverages and some cereal products. Today, D-allulose can be produced in many ways such as plant extraction, chemical synthesis, enzymatic conversion and can be safely used in the production of some foodstuffs. In this review, D-allulose production methods are presented, differences in these methods and their advantages and disadvantages are compared to each other.

___

  • [1] Namli, S., Sumnu, S.G., Oztop, M.H. (2021). Microwave glycation of soy protein isolate with rare sugar (D-allulose), fructose and glucose. Food Bioscience, 40, 100897.
  • [2] de Sousa, M., Silva Gurgel, B., Pessela, B.C., Gonçalves, L.R.B. (2020). Preparation of CLEAs and magnetic CLEAs of a recombinant L-arabinose isomerase for D-tagatose synthesis. Enzyme and Microbial Technology, 138, 109566.
  • [3] Onishi, Y., Furushiro, Y., Hirayama, Y., Adachi, S., Kobayashi, T. (2020). Production of tagatose and talose through isomerization of galactose in a buffer solution under subcritical water conditions. Carbohydrate Research, 493, 108031.
  • [4] Hossain, A., Yamaguchi, F., Matsuo, T., Tsukamoto, I., Toyoda, Y., Ogawa, M., Nagata, Y., Tokuda, M. (2015). Rare sugar d-allulose: Potential role and therapeutic monitoring in maintaining obesity and type 2 diabetes mellitus. Pharmacology & Therapeutics, 155, 49-59.
  • [5] Hashii, K., Hasegawa, T., Idegami, N., Kadota, M., Taniguchi, M., Toyama, T., Toyonaga, D. (2015). Discover Kagawa through English and Science, Kagawa University Student Development Project Press: Japonya.
  • [6] Yang, J., Zhang, T., Tian, C., Zhu, Y., Zeng, Y., Men, Y., Chen, P., Sun, Y., Ma, Y. (2019). Multi-enzyme systems and recombinant cells for synthesis of valuable saccharides: Advances and perspectives. Biotechnology Advances, 37(7), 107406.
  • [7] Yamamura, Y., Iwagaki, S., Hishida, M., Nagatomo, S., Fukada, K., Saito, K. (2019). Heat capacity and standard thermodynamic functions of three ketohexoses in monosaccharides including rare sugars: D-fructose, D-psicose, and D-tagatose. The Journal of Chemical Thermodynamics, 131, 420-430.
  • [8] Parıldı, E. (2019). D-tagatoz 3-epi̇meraz enzi̇mi̇ üreti̇mi̇ ve fruktozdan alluloz (psi̇koz) eldesi̇. Yüksek Lisans Tezi. Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi, Fen Bilimleri Enstitüsü, Adana.
  • [9] Li, C., Li, L., Feng, Z., Guan, L., Lu, F., Qin, H. (2021). Two-step biosynthesis of D-allulose via a multienzyme cascade for the bioconversion of fruit juices. Food Chemistry, 359, 1-9, 129746.
  • [10] Metabolic Balance (2019). Alüloz. Available online: https://www.metabolic-balance.com.tr/blog/alueloz.
  • [11] Zhu, P., Zeng, Y., Chen, P., Men, Y., Yang, J., Yue, X., Zhang, J., Zhu, Y., Sun, Y. (2020). A one-pot two-enzyme system on the production of high value-added D-allulose from Jerusalem artichoke tubers. Process Biochemistry, 88, 90-96.
  • [12] Kanasaki, A., Jiang, Z., Mizokami, T., Shirouchi, B., Iida, T., Nagata, Y., Sato, M. (2019). Dietary D-allulose alters cholesterol metabolism in Golden Syrian hamsters partly by reducing serum PCSK9 levels. Journal of Functional Foods, 60, 103429.
  • [13] Braunstein, C.R., Noronha, J.C., Khan, T.A., Mejia, S.B., Wolever, T.M., Josse, R.G., Kendall, C.W., Sievenpiper, J.L. (2020). Effect of fructose and its epimers on postprandial carbohydrate metabolism: A systematic review and meta-analysis. Clinical Nutrition, 39, 3308-3318.
  • [14] Wang, R., Hartel, R.W. (2020). Effects of moisture content and saccharide distribution on the stickiness of syrups. Journal of Food Engineering, 284, 1-13.
  • [15] Kimura, T., Kanasaki, A., Hayashi, N., Yamada, T., Iida, T., Nagata, Y., Okuma, K. (2017). D-allulose enhances postprandial fat oxidation in healthy humans. Nutrition, 43-44, 16-20.
  • [16] Izumori, K. (2002). Bioproduction strategies for rare hexose sugars. Naturwissenschaften, 89, 120-124.
  • [17] Li, W., Zhu, Y., Jiang, X., Zhang, W., Guang, C., Mu, W. (2020). One-pot production of D-allulose from inulin by a novel identified thermostable exoinulinase from Aspergillus piperis and Dorea sp. D-allulose 3-epimerase. Process Biochemistry, 99, 87–95.
  • [18] Zhang, J., Xu, C., Chen, X., Ruan, X., Zhang, Y., Xu, H., Guo, Y., Xu, J., Lv, P., Wang, Z. (2020). Engineered Bacillus subtilis harbouring gene of d-tagatose 3-epimerase for the bioconversion of D-fructose into D-psicose through fermentation. Enzyme and Microbial Technology, 136, 109531.
  • [19] FDA (2016). GRAS Notice (GRN) No. 647.
  • [20] Bilik, V., Tihlárik, K. (1973). Reactions of saccharides catalyzed by molybdate ions. IX.* Epimerization of ketohexoses. Chemické Zvesti, 28, 106-109.
  • [21] Doner, L.W. (1979). Isomerization of d-fructose by base: Liquid-chromatographic evaluation and the isolation of d-psicose. Carbohydrate Research, 70(2), 209-216.
  • [22] Takeshita, K., Suga, A., Takada, G., Izumori, K. (2000). Mass production of D-psicose from D-fructose by a continuous bioreactor system using immobilized D-tagatose 3-epimerase. Journal of Bioscience and Bioengineering, 90(4), 453-455.
  • [23] Wen, L., Huang, K., Zheng, Y., Fang, J., Kondengaden, S.M., Wang, P.G. (2016). Two-step enzymatic synthesis of 6-deoxy-L-psicose. Tetrahedron Letters, 57(34), 3819-3822.
  • [24] Zhang, W., Yu, S., Zhang, T., Jiang, B., Mu, W. (2016). Recent advances in d-allulose: Physiological functionalities, applications, and biological production. Trends in Food Science & Technology, 54, 127-137.
  • [25] Park, C.S., Kim, T., Hong, S.H., Shin, K.C., Kim, K.R., Oh, D.K. (2016). D-allulose production from D-fructose by permeabilized recombinant cells of Corynebacterium glutamicum cells expressing D-allulose 3-epimerase Flavonifractor plautii. PLoS One, 11(7), 1-22.
  • [26] Wichelecki, D.J., Rogers, E.O. (2020). Enzymatic Production of D-Allulose. United States Patent Application Publication, 1-7.
  • [27] Hough, L., Stacey, B.E. (1963). The occurrence of D-ribohexulose in Itea ilicifolia Itea virginica, and Itea yunnanensis. Phytochemistry, 2, 315-320.
  • [28] Takeshita, K., Suga, A., Takada, G., Izumori, K. (2000). Mass production of D-psicose from D-fructose by a continuous bioreactor system using immobilized D-tagatose 3-epimerase. Journal of Bioscience and Bioengineering, 90, 453-455.
  • [29] Yoshihara, K., Shinohara, Y., Hirotsu, T., Izumori, K. (2006). Bioconversion of D-psicose to D-tagatose and D-talitol by Mucoraceae fungi. Journal of Bioscience and Bioengineering, 101(3), 219-222.
  • [30] Beerens, K., Desmet, T., Soetaert, W. (2012). Enzymes for the biocatalytic production of rare sugars. Journal of Industrial Microbiology and Biotechnology, 39, 823-834.
  • [31] Lim, B.-C., Kim, H.-J., Oh, D.-K. (2009). A stable immobilized d-psicose 3-epimerase for the production of d-psicose in the presence of borate. Process Biochemistry, 44, 822-828.
  • [32] Li, Z., Gao, Y., Nakanishi, H., Gao, X., Cai, L. (2013). Biosynthesis of rare hexoses using microorganisms and related enzymes. Beilstein Journal of Organic Chemistry, 9, 2434-2445.
  • [33] Li, Z., Li, Y., Duan, S., Liu, J., Yuan, P., Nakanishi, H., Gao, X.D. (2015). Bioconversion of d-glucose to d-psicose with immobilized d-xylose isomerase and d-psicose 3-epimerase on Saccharomyces cerevisiae spores. Journal of Industrial Microbiology and Biotechnology, 42(8), 1117-1128.
  • [34] Comunale, J. (2021). Starch structure. Available online: https://study.com/learn/lesson/starch-structure-function-chemical-formula.html.
  • [35] Helmenstine, A.M. (2019). Cellulose chemical structure. Available online: https://www.thoughtco.com/what-is-cellulose-definition-4777807.
  • [36] Wikipedia (2022). Sucrose structure. Available online: https://en.wikipedia.org/wiki/Sucrose.
Akademik Gıda-Cover
  • ISSN: 1304-7582
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2003
  • Yayıncı: Sidas Medya Limited Şirketi