Mobil Haberleşme Combo Antenleri için Genişband Elektromanyetik Sönümlendirici

Mobil Şebeke İşletmecileri (MŞİ) farklı jenerasyon mobil teknolojilerinin farklı sıklık aralıklarında düzgün çalışmasını sağlamak zorundadırlar. Öte yandan, elektromanyetik (EM) kirlilik, ki daha çok mobil telefonlar ve mobil baz istasyonları tarafından kaynaklanır, toplumda sağlık kaygıları yaratmaktadır. Bu sebeple, MŞİler birçok anten çubuğunu tek bir radomeda saklayan combo antenleri kullanmaktadırlar. Bu çalışmada, araştırmacılar mobil şebeke baz istasyonu combo antenleri için genişband bir elektromanyetik sönümlendirici önermektedirler. Araştırmacılar bunun için çok katmanlı Jaumann sönümlendirme (JS) ve Salisbury ekranlama prensiplerini mikrometrik ve milimetrik grafit ve nonametrik karbon siyahı malzemeleri üzerine uygulamıştır. Buna ek olarak, ileri teknoloji gümüş ve nikel kaplanmış seramik kürecikler de sönümlendirici kalınlığını azaltmak üzere EM saçılımını arttırmak ve sönümlenmeyi iyileştirmek için kullanılmıştır. Son olarak, gümüş kaplı naylon kumaş da salisbury ekranlamasının en yenilikçi şekli ile sönümlendiriciye dik iplikçiklerle yerleştirilerek ısınma sorununu çözmüştür. Laboratuvar testlerinden sonra, sönümlendirici sahada test edilmiştir.  Doksan milimetre kalınlığındaki bir sönümlendirici uygulaması istenmeyen radyo frekans (RF) sinyalini mobil şebekenin çalışmasını engellemeden ve anten yayınım şeklini değiştirmeden 18 dB azalmiştir. Bu tip bir sönümlendirici istenmeyen elektromanyetik dalgaların yayılmasını engellemeye yardımcı olabilir ve bütün mobil şebeke RF gürültüsünü ve EM kirliliğini her iki yayın yönünde de azaltabilir. 

A Broadband Electromagnetic Absorber for Mobile Telecommunication Combo Antennas

Mobile network operators (MNOs) have to sustain the interworking of different generations of mobile technologies in different frequency bands.  On the other hand, electromagnetic (EM) pollution, which is caused mainly by the mobile devices and mobile network base stations, also raises public health concerns. Thus, MNOs use combo antennas, which encapsulate multiple antenna rods in a single radome. In this study, the authors propose a broadband electromagnetic absorber for the mobile network base station (BS) combo antennas. They have merged the multi-layer Jaumann absorber (JA) and Salisbury screen principles along with the merits of off-the-shelf micrometric and millimetric graphite and nanometric carbon black. Advanced silver and nickel coated nanometric cenospheres were also used to decrease the absorber thickness and to improve EM scattering and absorption. And finally, silver fabric was used as the salisbury screen with novel perpendicular threads into the absorber body as heat sink.   After the laboratory tests, the absorber has also been tested in the field. The application of the absorber has reduced the unwanted radio frequency (RF) signal around 18 dB in the tested frequency range without any network affecting disturbances or without any noticeable antenna pattern deformation with only a thickness of ninety millimeters. Such an absorber may also help containing the unwanted spread of electromagnetic waves from BS antennas; and, in return, decrease the overall mobile network RF noise and electromagnetic pollution both in uplink and downlink frequency bands.

___

  • Reference1: S. Mukherjee, Analytical Modeling of Heterogeneous Cellular Networks, 1st ed., Cambridge University Press, 2014.
  • Reference2: B.L. Ibey, C.C. Roth, P. B. Ledwig, et al., “Cellular effects of acute exposure to high peak power microwave systems”, Morphology and toxicology, Bioelectromagnetics, Vol. 37, No. 1, pp. 141-151, 2016.
  • Reference3: I. Calvente, R. Pérez-Lobato, M. I. Núñez, et al., “Does exposure to environmental radiofrequency electromagnetic fields cause cognitive and behavioural effects in 10-year-old boys?”, Bioelectromagnetics, Vol. 37, No. 1), pp. 25-36, 2016.
  • Reference4: Y. Diao, S.-W. Leung, Y. He, et al., “Detailed modeling of palpebral fissure and its influence on SAR and temperature rise in human eye under GHZ exposure”, Bioelectromagnetics, Vol. 37, No. 4, pp. 256-263, 2016.
  • Reference5: N. Varsier, D. Plets, Y. Corre, et al., “A novel methods to assess human population exposure induced by a wireless cellular network”, Bioelectromagnetics, Vol. 36, No. 6, pp. 451-463, 2015.
  • Reference6: T. Dlugosz, “Bioelectromagnetic effects measurements – SAR and induced current”, Bio-Medical Materials and Engineering, Vol. 25, pp. 1-7, 2015.
  • Reference7: Q. Li, L. Chen, J. Ding, et al., “Open-cell phenolic carbon foam and electromagnetic interference shielding properties”, Carbon, Vol. 104, pp.90-105, 2016.
  • Reference8: X. Hong, D. D. L. Chung, “Carbon nanofiber mats for electromagnetic interference shielding”, Carbon, Vol. 111, pp.529-537, 2017.
  • Reference9: Y. Danlée, C. Bailly, I. Huynen, “Thin and flexible multilayer polymer composite structures for effective control of microwave electromagnetic absorption”, Composites Science and Technology, Vol. 100, pp.182-188, 2014.
  • Reference10: F. M. Idris, M. Hashim, Z. Abbas, et al., “Recent developments of smart electromagnetic absorbers based polymer-composites at gigahertz frequencies”, Journal of Magnetism and Magnetic Materials, Vol. 405, pp.197-208, 2016.
  • Reference11: Y. Chen, C. Su, Q. Yuan, et al., “Electromagnetic Shielding Performance of Nickel-Plated Expanded Graphite/Wood Fiber Composite”, BioResources, Vol. 11, No. 2, pp.5083-5099, 2016.
  • Reference12: R. Dhawan, S. Kumari, R. Kumar, et al., “Mesocarbon microsphere composites with Fe3 O4 nanoparticles for outstanding electromagnetic interference shielding effectiveness”, Rsc Advances, Vol.5, No.54, pp.43279-43289, 2015.
  • Reference13: F. Wu, M. Sun, W. Jiang, et al., “A self-assembly method for the fabrication of a three-dimensional (3D) polypyrrole (PPy)/poly (3, 4-ethylenedioxythiophene) (PEDOT) hybrid composite with excellent absorption performance against electromagnetic pollution”, Journal of Materials Chemistry C, Vol.4, No.1, pp.82-88, 2016.
  • Reference14: J. Z. He, X. X. Wang, Y.L. Zhang, et al., “Small magnetic nanoparticles decorating reduced graphene oxides to tune the electromagnetic attenuation capacity”, Journal of Materials Chemistry C, Vol.4, No.29, pp.7130-7140, 2016.
  • Reference15: Y. Ding, J. Zhu, C. Wang, et al., “Multifunctional three-dimensional graphene nanoribbons composite sponge” Carbon, Vol.104, pp.133-140, 2016.
  • Reference16: D. Micheli, A. Vricella, R. Pastore, et al., “Ballistic and electromagnetic shielding behaviour of multifunctional Kevlar fiber reinforced epoxy composites modified by carbon nanotubes”, Carbon, Vol.104, pp.141-156, 2016.
  • Reference17: S.E. Zakiyan, H. Azizi, I. Ghasemi, “Influence of chain mobility on rheological, dielectric and electromagnetic interference shielding properties of poly methyl-methacrylate composites filled with graphene and carbon nanotube”, Composites Science and Technology, Vol.142, pp.10-19, 2017.
  • Reference18: K. Qi, Y. Wang, X. Yuan, “Stealth mechanism analysis of the Phase-Modulated Surface”, IEEE InProgress in Electromagnetic Research Symposium (PIERS), Shangai, pp. 3726-3729, Aug 8 2016.
  • Reference19: Y. Ra'di, V. S. Asadchy, S. A. Tretyakov, “Total absorption of electromagnetic waves in ultimately thin layers”, IEEE Transactions on Antennas and Propagation, Vol.61, No.9, pp.4606-4614, 2013.
  • Reference20: J. Z. He, X. X. Wang, Y. L. Zhang, et al., “Small magnetic nanoparticles decorating reduced graphene oxides to tune the electromagnetic attenuation capacity”, Journal of Materials Chemistry C, Vol.4, No.29, pp.7130-7140, 2016.
  • Reference21: C. B. Reynolds, M. S. Ukhtary, R. Saito, “Absorption of THz electromagnetic wave in two mono-layers of graphene”, Journal of Physics D: Applied Physics, Vol.49, No.19, pp. 195306, 2016.
  • Reference22: Y. J. Hu, H. Y. Zhang, X. L. Cheng, et al., “The Influence of Electroless-Silver Coated Cenosphere Powders on the Electromagnetic Shielding Interference Effectiveness and Mechanical Properties of the Silicone Rubber”, Advanced Materials Research, Vol.152, pp. 1360-1365, 2011.
  • Reference23: W. Ying, C. Yong-Zhi, N. Yan, et al., “Design and Experiments of Low-frequency Broadband Metamaterial Absorber based on Lumped Elements”, Acta Physica Sinica, Vol.62, pp.1-5, 2013.
  • Reference24: E. F. da Silva, J. S. Rocha, P. R. Lins, et al., “Characterization of electromagnetic radiation absorber materials”, Microwave and Optoelectronics, SBMO/IEEE MTT-S Int. Conf., Brasilia, pp. 326-329, July 2005.
  • Reference25: F. Wang, W. Jiang, T. Hong, et al., “Radar cross section reduction of wideband antenna with a novel wideband radar absorbing materials”, IET Microwaves, Antennas & Propagation, Vol.8, No.7, pp.491-497, 2014.