Toprak Kaynaklı Bir Isı Pompasında R410A’ya Alternatif Soğutucu Akışkanların ASHRAE Sınıflandırmasına Göre Teorik Olarak İncelenmesi

Günümüzde çevre kirliliği ve küresel ısınma global bir tehdit haline gelmiştir. Yenilenebilir enerji kaynaklarının kullanımı bu sorunun üstesinden gelmek için akılcı bir yaklaşımdır ve toprak kaynaklı ısı pompaları da bu yaklaşımda önemli bir yer tutmaktadır. Fakat bu sistemlerde kullanılan soğutucu akışkanlar çoğunlukla belirlenen normların üzerinde küresel ısınma potansiyeline sahiptir. Bu çalışmada Engineering Equation Solver paket programı kullanılarak R410A alternatif soğutucu akışkanların performans değerleri ve çevresel etkileri deneysel çalışmadan elde edilen veriler yardımıyla ASHRAE güvenlik gruplarına göre teorik olarak analiz edilmiştir. Sonuçlar R32’nin, COP değerini %3.1 artırdığını, kütlesel debiyi %35’e yakın düşürdüğünü göstermiştir. Ayrıca çalışmada R152a'nın en başarılı sonuçları sağladığı hesaplanmıştır. R152a, R410A'ya kıyasla COP'ta %8,5'lik bir artış sağlamıştır. Çevre Koruma Ajansı tarafından alternatif soğutucu akışkan olarak belirtilen R452B, R454B ve R454C'nin işletme maliyetlerinin R410A'dan daha yüksek olduğu gözlemlenmiştir. Çalışmada R454C'nin her açıdan en düşük değerlere sahip olduğu belirlenmiştir. R410A yerine R32 kullanılmasının CO2 eşdeğeri emisyonlarını yaklaşık %2.54 oranında azalttığı hesaplanmıştır.

Theoretical Examination of Alternative Refrigerants for R410A in a Ground Source Heat Pump According to ASHRAE Classification

Today, environmental pollution and global warming have become global threats. The use of renewable energy sources is a rational approach to overcome this problem, and ground source heat pumps also play an important role in this approach. However, the refrigerants used in these systems often have global warming potential values above the specified norms. In this study, using the Engineering Equation Solver package program, the performance values, and environmental effects of R410A alternative refrigerants were analyzed theoretically according to ASHRAE safety groups with the help of the data obtained from the experimental study. The results showed that the R32 increases the COP value by 3.1% and reduces the mass flow rate by nearly 35%. It has been calculated that R152a provides the most successful results in the study. R152a provided an 8.5% increase in COP compared to R410A. It has been observed that the operating costs of R452B, R454B and R454C, which are specified as alternative refrigerants by environmental protection agency, are higher than R410A. In the study, it was determined that the R454C has the lowest values in all respects. It has been calculated that using R32 instead of R410A reduces the CO2 equivalent emissions by approximately 2.54%.

___

  • M. Pacesila, S.G. Burcea, S.E. Colesca, Analysis of renewable energies in European Union, Renew. Sustain. Energy Rev. 56 (2016) 156–170.
  • S. Rosiek, F.J. Batlles, Renewable energy solutions for building cooling, heating and power system installed in an institutional building: Case study in southern Spain, Renew. Sustain. Energy Rev. 26 (2013) 147–168.
  • H. Esen, M. Inalli, M. Esen, Numerical and experimental analysis of a horizontal ground-coupled heat pump system, Build. Environ. 42 (2007) 1126–1134.
  • H. Esen, M. Inalli, M. Esen, K. Pihtili, Energy and exergy analysis of a ground-coupled heat pump system with two horizontal ground heat exchangers, Build. Environ. 42 (2007) 3606–3615.
  • H. Hu, T.M. Eikevik, P. Neksa, A. Hafner, G. Ding, Q. Huang, J. Ye, Performance analysis of an R744 ground source heat pump system with air-cooled and water-cooled gas coolers, Int. J. Refrig. 63 (2016) 72–86.
  • R. Karabacak, E. Güven Acar, H. Kumsar, A. Gökgöz, M. Kaya, Y. Tülek, Experimental investigation of the cooling performance of a ground source heat pump system in Denizli, Turkey, Int. J. Refrig. 34 (2011) 454–465.
  • W. Wu, H.M. Skye, Progress in ground-source heat pumps using natural refrigerants, Int. J. Refrig. 92 (2018) 70–85.
  • L. Pu, L. Xu, D. Qi, Y. Li, Structure optimization for horizontal ground heat exchanger, Appl. Therm. Eng. 136 (2018) 131–140.
  • S.A. Ghoreishi-Madiseh, A.F. Kuyuk, M.A. Rodrigues de Brito, An analytical model for transient heat transfer in ground-coupled heat exchangers of closed-loop geothermal systems, Appl. Therm. Eng. 150 (2019) 696–705.
  • C. Li, J. Mao, X. Peng, W. Mao, Z. Xing, B. Wang, Influence of ground surface boundary conditions on horizontal ground source heat pump systems, Appl. Therm. Eng. 152 (2019) 160–168.
  • European Commission, Fluorinated greenhouse gases, (2021). https://ec.europa.eu/clima/policies /f-gas_en (accessed April 18, 2021).
  • United Nations, Kyoto protocol to the United Nations framework convention on climate change, New York, USA, 1997.
  • The European Parliament and the Council of the European Union, Regulation (EU) no 517/2014 of the European parliament and of the council of 16 April 2014 on fluorinated greenhouse gases and repealing regulation (EC) No 842/2006, Off. J. Eur. Union. (2014).
  • P.A. Domanski, R. Brignoli, J.S. Brown, A.F. Kazakov, M.O. McLinden, Low-GWP refrigerants for medium and high-pressure applications, Int. J. Refrig. 84 (2017) 198–209.
  • Environmental Protection Agency (EPA), Protection of Stratospheric Ozone: Listing of Substitutes Under the Significant New Alternatives Policy Program, (2020) 35874–35895. https://www.federalregister.gov/documents/2020/06/12/2020-11990/protection-of-stratospheric-ozone-listing-of-substitutes-under-the-significant-new-alternatives (accessed April 19, 2021).
  • ASHRAE, Designation and Safety Classification of Refrigerants, ANSI/ASHRAE Add. f to ANSI/ASHRAE Stand. 34-2019. (2019) 2.
  • A. Mota-Babiloni, J. Navarro-Esbrí, P. Makhnatch, F. Molés, Refrigerant R32 as lower GWP working fluid in residential air conditioning systems in Europe and the USA, Renew. Sustain. Energy Rev. 80 (2017) 1031–1042.
  • Daikin Global, R-32, Next-Generation Refrigerant, (2021). https://www.daikin.com/corporate /why_daikin/benefits/r-32/ (accessed April 16, 2021).
  • Z. Yang, B. Feng, H. Ma, L. Zhang, C. Duan, B. Liu, Y. Zhang, S. Chen, Z. Yang, Analysis of Lower GWP and Flammable Alternative Refrigerants, Int. J. Refrig. (2021).
  • A. López-Belchí, F. Illán-Gómez, J.R. García Cascales, F. Vera García, R32 and R410A condensation heat transfer coefficient and pressure drop within minichannel multiport tube. Experimental technique and measurements, Appl. Therm. Eng. 105 (2016) 118–131.
  • B. Luo, Theoretical study of R32 in an oil flooded compression cycle with a scroll machine, Int. J. Refrig. 70 (2016) 269–279.
  • A. Alabdulkarem, R. Eldeeb, Y. Hwang, V. Aute, R. Radermacher, Testing, simulation and soft-optimization of R410A low-GWP alternatives in heat pump system, Int. J. Refrig. 60 (2015) 106–117.
  • H. Pham, R. Rajendran, R32 And HFOs As Low-GWP Refrigerants For Air Conditioning, Int. Refrig. Air Cond. Conf. (2012). https://docs.lib.purdue.edu/iracc/1235 (accessed May 1, 2021).
  • X. Xu, Y. Hwang, R. Radermacher, Performance comparison of R410A and R32 in vapor injection cycles, Int. J. Refrig. 36 (2013) 892–903.
  • Environmental Protection Agency (EPA), Protection of stratospheric ozone: listing of substitutes for refrigeration and air conditioning and revision of the venting prohibition for certain refrigerant substitutes. Federal Register, Rules and Regulations, 2020.
  • The Japan Society of Refrigerating and Air Conditioning Engineers, Risk Assessment of Mildly Flammable Refrigerants, Tokyo, 2014.
  • L. Jia, W. Jin, Y. Zhang, Experimental study on R32 leakage and diffusion characteristic of wall-mounted air conditioners under different operating conditions, Appl. Energy. 185 (2017) 2127–2133.
  • W. Goetzler, L. Bendixen, P. Bartholomew, Risk Assessment of HFC-32 and Residential Heat Pumps Final Report, 1998.
  • C. Zilio, R. Brignoli, N. Kaemmer, B. Bella, Energy efficiency of a reversible refrigeration unit using R410A or R32, Sci. Technol. Built Environ. 21 (2015) 502–514.
  • A. Barve, L. Cremaschi, Drop-in Performance of Low GWP Refrigerants in a Heat Pump System for Residential Applications, Int. Refrig. Air Cond. Conf. (2012).
  • A. Mota-Babiloni, J. Navarro-Esbrí, P. Makhnatch, F. Molés, Refrigerant R32 as lower GWP working fluid in residential air conditioning systems in Europe and the USA, Renew. Sustain. Energy Rev. 80 (2017) 1031–1042.
  • S. Konghuayrob, K. Khositkullaporn, Comparison of R32, R410A and R290 Refrigerant in Inverter Heat Pumps Application Performance Comparison of R32, R410A and R290 Refrigerant in Inverter Heat pumps application, in: Int. Refrig. Air Cond. Conf., 2016. http://docs.lib.purdue.edu/iracc/1577 (accessed April 18, 2021).
  • X. Wang, Z. Gao, X. Gao, W. Guan, X. Han, G. Chen, Investigation on the Vapor-Liquid Equilibrium for the Ternary Mixture HFC-32 + HFC-125 + HFC-161 at Temperatures from 265.15 K to 303.15 K, J. Chem. Eng. Data. 60 (2015) 2721–2727.
  • M. Kilic, M. Anjrini, Comparative performance analysis of a combined cooling system with mechanical and adsorption cycles, Energy Convers. Manag. 221 (2020) 113208.
  • A.G. Devecioğlu, V. Oruç, Energetic performance analysis of R466A as an alternative to R410A in VRF systems, Eng. Sci. Technol. an Int. J. 23 (2020) 1425–1433.
  • European Commission, The availability of refrigerants for new split air conditioning systems that can replace fluorinated greenhouse gases or result in a lower climate impact, Brussels, 2020.
  • B. Gschrey, J. Kleinschmidt, S. Barrault, Briefing Paper: HFCs and HFC alternatives in split air conditioning systems, 2020. https://ec.europa.eu/clima/sites/clima/files/docs/0106/2020_03_ 25_hfc_alternatives_en.pdf (accessed April 19, 2021).
  • WMO (World Meteorological Organization), . Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project-Report No. 58., Geneva, Switzerland, 2018. https://ozone.unep.org/sites/default/files/2019-05/SAP-2018-Assessment-report.pdf (accessed May 24, 2021).
  • A. Mota-Babiloni, J. Navarro-Esbrí, Á. Barragán, F. Molés, B. Peris, Drop-in energy performance evaluation of R1234yf and R1234ze(E) in a vapor compression system as R134a replacements, Appl. Therm. Eng. 71 (2014) 259–265.
  • F. Illán-Gómez, J.R. García-Cascales, Experimental comparison of an air-to-water refrigeration system working with R134a and R1234yf, Int. J. Refrig. 97 (2019) 124–131.
  • Environmental Protection Agency (EPA), Pollution Prevention Tools and Calculators, Pollution Prevention (P2), (n.d.). https://www.epa.gov/p2/pollution-prevention-tools-and-calculators (accessed April 18, 2021).
  • IPCC, Intergovernmental Panel on Climate Change Fifth Assessment Report, 2013.
  • IPCC, Intergovernmental Panel on Climate Change Fourth Assessment Report, 2007.
  • Danfoss, Refrigerant Slider, (2021). https://reftools.danfoss.com/spa/tools/ref-slider (accessed July 28, 2021).
  • Solstice® N41 (R-466A) | Honeywell, (n.d.). https://sustainability.honeywell.com/us/en/pro ducts/refrigerants/hfo-blends/solstice-n41-r-466a#resources-tab (accessed April 18, 2021).
  • R161 Safety data sheet, (n.d.). http://www.msds-al.co.uk/assets/file_assets/SDS_058-CLP-FLUOROETHANE.pdf (accessed April 18, 2021).
  • A. Kapıcıoğlu, H. Esen, Experimental investigation on using Al2O3/ethylene glycol-water nano-fluid in different types of horizontal ground heat exchangers, Appl. Therm. Eng. (2019) 114559.
  • A. Kapicioglu, Energy and exergy analysis of a ground source heat pump system with a slinky ground heat exchanger supported by nanofluid, J. Therm. Anal. Calorim. (2021) 1–14. doi:10.1007/s10973-020-10498-0.
  • A.G. Devecioğlu, Seasonal performance assessment of refrigerants with low GWP as substitutes for R410A in heat pump air conditioning devices, Appl. Therm. Eng. 125 (2017) 401–411.
  • United Nations Industrial Development Organization, Greening of Industry under the Montreal Protocol Greening of Industry under the Montreal Protocol, (2009). www.unido.org (accessed July 27, 2021).
  • X. Xu, Y. Hwang, R. Radermacher, Performance comparison of R410A and R32 in vapor injection cycles, Int. J. Refrig. 36 (2013) 892–903.
  • Y.A. Çengel, M.A. Boles, Thermodynamics an Engineering Approach, seven edit, Palme Yayınevi, 2013.
  • P. Makhnatch, R. Khodabandeh, The Role of Environmental Metrics (GWP, TEWI, LCCP) in the Selection of Low GWP Refrigerant, Energy Procedia. 61 (2014) 2460–2463.
  • AIRAH 2012, Methods of calculating Total Equivalent Warming Impact (TEWI), Australia, 2012. www.airah.org.au (accessed July 27, 2021).
  • A. Mota-Babiloni, J.R. Barbosa, P. Makhnatch, J.A. Lozano, Assessment of the utilization of equivalent warming impact metrics in refrigeration, air conditioning and heat pump systems, Renew. Sustain. Energy Rev. 129 (2020) 109929.
  • European Environment Agency, Greenhouse gas emission intensity of electricity generation in Europe, (2021). https://www.eea.europa.eu/data-and-maps/indicators/overview-of-the-electricity-production-3/assessment-1 (accessed July 16, 2021).
  • A. Gaved, “Don’t try to retrofit R32 in an R410A system” warns FETA - Refrigeration and Air Conditioning, (2018). https://www.racplus.com/news/dont-try-to-retrofit-r32-in-an-r410a-system-warns-feta-05-03-2018/ (accessed April 21, 2021).