Farklı kimyasal ortamların indirekt kompozitlerin sertlik ve aşınma dirençlerine etkisi

AMAÇ: Farklı kimyasal solüsyonların indirekt kompozit materyallerinin aşınması ve mikrosertliğine etkisinin değerlendirilmesidir. GEREÇ VE YÖNTEM: Çalışmada GrandioSO, Solidex ve Signum olmak üzere üç farklı indirekt kompozit rezin materyali kullanıldı. Her bir materyalden, aşınma testi için 24 adet (6.5 mm çapında, 4 mm kalınlığında), mikrosertlik testi için 20 adet (5 mm çapında, 2 mm kalınlığında) test örneği hazırlandı. Solidex ve Signum, 320-500 nm dalgaboyu ksenon stroboskopik ışık cihazıyla her iki yüzden 180 sn süreyle polimerize edildi. GrandioSO ise 20 sn halojen ışık kaynağı ile polimerize edildi. Takiben örnekler dört alt gruba ayrılarak 1 hafta süre ile distile su, 0.02 N sitrik asit, %75 etanol veya yapay tükürükte (kontrol) bekletildi. Aşınma testi için hazırlanan örnekler pin-on-disk aşınma cihazının pin tutucu bölümüne yerleştirildi ve test süresince örnek yüzeylerine 15 N kuvvet (kayma hızı: 0.6 m.sn-1, kayma mesafesi: 100 m, frekans 1.5 Hz) uygulandı. Mikrosertlik testi için hazırlanan örneklerin ölçümleri Vickers mikrosertlik test cihazı kullanılarak ölçüldü. BULGULAR: GrandioSO, sitrik asit, etanol, yapay tükürük ve distile suda Solidex ve Signum’dan daha yüksek sertlik değeri gösterdi (p < 0.05). En yüksek aşınma değeri Signum için distile suda görüldü (p < 0.05). Solidex için en yüksek aşınma sitrik asitte görüldü, ancak bu değerin sadece yapay tükürükte bekletilen örneklerden istatistiksel olarak farklı olduğu saptandı (p < 0.05). GrandioSO, yine sitrik asitte bekletilen örneklerde en fazla aşınma gösterirken, bu değerin sadece distile suda bekletilen örneklerden istatistiksel farklılık gösterdiği tespit edildi (p < 0.05). SONUÇ: Farklı kimyasal solüsyonların, aşınma ve mikrosertlik üzerine etkileri materyale göre değişkenlik gösterdi. Çalışmada incelenen indirekt kompozitlerin aşınma ve mikrosertlik ölçümleri arasında herhangi bir ilişkinin olmadığı görüldü.

The effect of different chemical media on the hardness and wear resistance of indirect composites

OBJECTIVE: The aim of this study was to evaluate the wear resistance and microhardness of three indirect composite resins after aging in different chemical solutions.MATERIALS AND METHOD: Three indirect composite resins, GrandioSO, Solidex and Signum, were used. Twenty specimens (diameter: 5 mm, thickness: 2 mm) were prepared from each composite material for the microhardness test and twenty-four specimens (diameter: 6.5 mm, thickness: 4 mm) were prepared from each composite material for the wear test. Solidex and Signum were polymerized at both sides for 180 s by using a 320-500 nm wavelength xenon stroboscopic light-curing unit. GrandioSO was polymerized 20 s by using a halogen light-curing unit. The specimens were then divided into four subgroups and stored for 1 week at 37 °C, in either distilled water, 0.02 N citric acid, 75% ethanol or artificial saliva (control). A pin-on-disc wear device was used to determine the wear rate of the composite resin. A load of 15 N was applied to the specimen surface (sliding velocity: 0.6 m.s-1, sliding distance: 100 m, frequency: 1.5 Hz). Microhardness measurements were determined by using a Vickers testing device.RESULTS: Of all test materials, GrandioSO revealed the highest microhardness value and the values were statistically different compared with those of Signum and Solidex in citric acid, ethanol, artificial saliva or distilled water (p<0.05). The greatest wear value for Signum was obtained in distilled water (p<0.05). Solidex showed the greatest wear value in citric acid; however this value was significantly different only from that in artificial saliva (p<0.05). Similarly, GrandioSO revealed the greatest wear value in citric acid, and this value was significantly different only from that in distilled water (p<0.05).CONCLUSION: The effect of the different chemical media on wear and microhardness was found to vary according to the material; no correlation was observed between microhardness and wear measurements.

___

  • Vaishnavi C, Kavitha S, Narayanan LL. Comparison of the fracture toughness and wear resistance of indirect composites cured by conventional post curing methods and electron beam irradiation. J Conserv Dent 2010;13:145-7.
  • Souza RO, Ozcan M, Michida SM, de Melo RM, Pavanelli CA, Bottino MA, et al. Conversion degree of indirect resin composites and effect of thermocycling on their physical properties. J Prosthodont 2010;19:218-25.
  • Matsumura H, Tanoue N, Atsuta M, Kitazawa S. A metal halide light source for laboratory curing of prosthetic composite materials J Dent Res 1997;76:688-93.
  • Suzuki S, Nagai E, Taira Y, Minesaki Y. In vitro wear of indirect composite restoratives. J Prosthet Dent 2002;88:431-6.
  • Borba M, Della Bona A, Cecchetti D. Flexural strength and hardness of direct and indirect composites. Braz Oral Res 2009;23:5-10.
  • Reinhardt JW, Boyer DB, Stephens NH. Effects of secondary curing on indirect posterior composite resins. Oper Dent 1994;19:217-20.
  • Kurt H, Erdelt KJ, Cilingir A, Mumcu E, Sülün T, Tuncer N, et al. Twobody wear of occlusal splint materials. J Oral Rehabil 2012;39:584-90.
  • Heintze SD, Zellweger G, Cavalleri A, Ferracane J. Influence of the antagonist material on the wear of different composites using two different wear simulation methods. Dent Mater 2006;22:166-75.
  • Sideridou ID, Karabela MM, Vouvoudi ECh. Dynamic thermomechanical properties and sorption characteristics of two commercial light cured dental resin composites. Dent Mater 2008;24:737-43.
  • Ghazal M, Albashaireh ZS, Kern M. Wear resistance of nanofilled composite resin and feldspathic ceramic artificial teeth. J Prosthet Dent 2008;100:441-8.
  • Heintze SD, Zappini G, Rousson V. Wear of ten dental restorative materials in five wear simulators--results of a round robin test. Dent Mater 2005;21:304-17.
  • Lutz F, Phillips RW, Roulet JF, Setcos JC. In vivo and in vitro wear of potential posterior composites. J Dent Res 1984;63:914-20.
  • Yap AU, Chew CL, Ong LF, Teoh SH. Environmental damage and occlusal contact area wear of composite restoratives. J Oral Rehabil 2002;29:87-97.
  • Kloosterboer JG, Lijten GFCM. Photopolymers exhibiting a large difference between glass transition and curing temperatures. Polymer 1990;31:95-101.
  • Mandikos MN, McGivney GP, Davis E, Bush PJ, Carter JM. A comparison of the wear resistance and hardness of indirect composite resins. J Prosthet Dent 2001;85:386-95.
  • Miranda CB, Pagani C, Bottino MC, Benetti AR. A comparison of microhardness of indirect composite restorative materials. J Appl Oral Sci 2003;11:157-61.
  • Kawai K, Iwami Y, Ebisu S. Effect of resin monomer composition on toothbrush wear resistance. J Oral Rehabil 1998;25:264-8.
  • Harrison A, Draughn RA. Abrasive wear, tensile strength, and hardness of dental composite resins--is there a relationship? J Prosthet Dent 1976;36:395-8.
  • Arvidson K, Johansson EG. Galvanic currents between dental alloys in vitro. Scand J Dent Res 1985;93:467-73.
  • Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus. American Society for Testing and Materials. ASTM G99-95a, 2000.
  • Turssi CP, De Moraes Purquerio B, Serra MC. Wear of dental resin composites: insights into underlying processes and assessment methods--a review. J Biomed Mater Res B Appl Biomater 2003;65:280-5.
  • Neale MJ. The tribology handbook, 2nd ed. London: ButterworthHeinemann; 1995.
  • Say EC, Civelek A, Nobecourt A, Ersoy M, Guleryuz C. Wear and microhardness of different resin composite materials. Oper Dent 2003;28:628-34.
  • Tagtekin DA, Yanikoglu FC, Bozkurt FO, Kologlu B, Sur H. Selected characteristics of an Ormocer and a conventional hybrid resin composite. Dent Mater 2004;20:487-97.
  • Food and Drug Administration. FDA guidelines for chemistry and technology requirements of indirect additive petitions. Washigton: FDA; 1976.
  • Yap AU, Tan SH, Wee SS, Lee CW, Lim EL, Zeng KY. Chemical degradation of composite restoratives. J Oral Rehabil 2001;28:1015-21.
  • Söderholm KJ, Zigan M, Ragan M, Fischlschweiger W, Bergman M. Hydrolytic degradation of dental composites. J Dent Res 1984;63:1248-54.
  • Hansen EK. After-polymerization of visible light activated resins: surface hardness vs. light source. Scand J Dent Res 1983;91:406-10.
  • Kao EC. Influence of food-simulating solvents on resin composites and glass-ionomer restorative cement. Dent Mater 1989;5:201-8.
  • Chadwick RG, McCabe JF, Walls AW, Storer R. The effect of storage media upon the surface microhardness and abrasion resistance of three composites. Dent Mater 1990;6:123-8.
  • Savabi O, Nejatidanesh F, Shabanian M, Anbari Z. Two-body wear resistance of some indirect composite resins. Eur J Prosthodont Restor Dent 2011;19:81-4.
  • Braem M, Finger W, Van Doren VE, Lambrechts P, Vanherle G. Mechanical properties and filler fraction of dental composites. Dent Mater 1989;5:346-8.
  • St Germain H, Swartz ML, Phillips RW, Moore BK, Roberts TA. Properties of microfilled composite resins as influenced by filler content. J Dent Res 1985;64:155-60.
  • Tanoue N, Matsumura H, Atsuta M. Wear and surface roughness of current prosthetic composites after toothbrush/dentifrice abrasion. J Prosthet Dent 2000;84:93-7.
  • McLundie AC, Patterson CJ. Comparison of the abrasive wear in vitro of a number of composite resins. Br Dent J 1982;153:404-6.
  • Liu Q, Ding J, Chambers DE, Debnath S, Wunder SL, Baran GR. Filler-coupling agent-matrix interactions in silica/polymethylmethacrylate composites. J Biomed Mater Res 2001;57:384-93.
  • Söderholm KJ, Mukherjee R, Longmate J. Filler leachability of composites stored in distilled water or artificial saliva. J Dent Res 1996;75:1692-9.
  • Söderholm KJ. Leaking of fillers in dental composites. J Dent Res 1983;62:126-30.
  • Asmussen E. Factors affecting the quantity of remaining double bonds in restorative resin polymers. Scand J Dent Res 1982;90:490-6.
  • Tarumi H, Torii M, Tsuchitani Y. Relationship between particle size of barium glass filler and water sorption of light-cured composite resin. Dent Mater J 1995;14:37-44.