Potential Impacts of Gut Microbiota on Immune System Related Diseases: Current Studies and Future Challenges

Human microbiota includes trillions of cohabitant microorganisms in a symbiotic relationship. They directly or indirectly communicate with immune system. Human microbiome profiling studies has accelerated microbiota studies and interest to microbiota and disease relationship . Some metabolic activities of human microbiota were known, but in recent years many different roles in addition to metabolic activities, have been shown. It can affect systems and mechanisms, and most importantly clinical course of diseases in dysbiosis condition, and reduces most symptoms when symbiosis is provided. These features make microbiota a potential therapeutic tool or biomarker for a spate of disease in clinic applications.This review summarizes hostgut microbiota interaction, role of microbiota in immune-related diseases, and potential therapeutic approaches.

___

Turnbaugh PJ, Ley RE, Hamady M, , et al. The human microbiome project. Nature 2007; 449: 804-810.

Shreiner AB, Kao JY, Young VB. The gut microbiome in health and in disease. Curr Opin Gastroenterol 2015; 31: 69-75.

Group NHW, Peterson J, Garges S, et al. The NIH Human Microbiome Project. Genome Res 2009; 19: 2317-2323.

Sirisinha S. The potential impact of gut microbiota on your health:Current status and future challenges. Asian Pac J Allergy Immunol 2016; 34: 249-264.

Conlan S, Kong HH, Segre JA. Species-level analysis of DNA sequence data from the NIH Human Microbiome Project. PLoS One 2012; 7: e47075.

Human Microbiome Project C. A framework for human microbiome research. Nature 2012; 486: 215-221.

Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464: 59-65.

Guaraldi F, Salvatori G. Effect of breast and formula feed- ing on gut microbiota shaping in newborns. Front Cell Infect Microbiol 2012; 2: 94.

Flint HJ, Scott KP, Duncan SH, et al. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 2012; 3: 289-306.

Duncan SH, Flint HJ. Probiotics and prebiotics and health in ageing populations. Maturitas 2013; 75: 44-50.

Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature 2011; 473: 174-180.

Hebuterne X. Gut changes attributed to ageing: effects on intestinal microflora. Curr Opin Clin Nutr Metab Care 2003; 6: 49-54.

Patel PJ, Singh SK, Panaich S, et al. The aging gut and the role of prebiotics, probiotics, and synbiotics: A review. Journal of Clinical Gerontology and Geriatrics 2014; 5: 3-6.

Larsbrink J, Rogers TE, Hemsworth GR, et al. A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes. Nature 2014; 506: 498-502.

Kim D, Yoo SA, Kim WU. Gut microbiota in autoimmuni- ty: potential for clinical applications. Arch Pharm Res 2016; 39: 1565-1576.

den Besten G, van Eunen K, Groen AK, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 2013; 54: 2325-2340.

Jandhyala SM, Talukdar R, Subramanyam C, et al. Role of the normal gut microbiota. World J Gastroenterol 2015; 21: 8787-8803.

Johansson ME, Phillipson M, Petersson J, et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci U S A 2008; 105: 15064-15069.

Kim YS, Ho SB. Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep 2010; 12: 319-330.

Van der Sluis M, De Koning BA, et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 2006; 131: 117-129.

Johansson ME, Larsson JM, Hansson GC. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci U S A 2011; 108 Suppl 1: 4659-4665.

Littman DR, Rudensky AY. Th17 and regulatory T cells in mediating and restraining inflammation. Cell 2010; 140: 845-858.

Zhang YZ, Li YY. Inflammatory bowel disease: pathogenesis. World J Gastroenterol 2014; 20: 91-99.

Tan TG, Sefik E, Geva-Zatorsky N, et al. Identifying spe- cies of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice. Proc Natl Acad Sci U S A 2016; 113: E8141-E8150.

Mazmanian SK. Gut Immune Balance Is as Easy as S-F-B. Immunity 2009; 31: 536-538.

Vaishnava S, Yamamoto M, Severson KM, et al. The antibacterial lectin RegIIIgamma promotes the spatial seg- regation of microbiota and host in the intestine. Science 2011; 334: 255-258.

Taskiran EZ, Cetinkaya A, Balci-Peynircioglu B, et al. The effect of colchicine on pyrin and pyrin interacting proteins. J Cell Biochem 2012; 113: 3536-3546.

Masters SL, Simon A, Aksentijevich I, et al. Horror auto- inflammaticus: the molecular pathophysiology of auto- inflammatory disease (*). Annu Rev Immunol 2009; 27: 621-668.

Z.A. K. Alterations in gut microbiota composition in famil- ial Mediterranean fever. National Academy of Sciences of Armenia, Reports 2008; 106: 374-380.

Khachatryan ZA, Ktsoyan ZA, Manukyan GP, et al. Predominant role of host genetics in controlling the com- position of gut microbiota. PLoS One 2008; 3: e3064.

Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature 2011; 474: 307-317.

Zamani S, Hesam Shariati S, Zali MR, et al. Detection of en- terotoxigenic Bacteroides fragilis in patients with ulcer- ative colitis. Gut Pathog 2017; 9: 53.

Gevers D, Kugathasan S, Denson LA, et al. The treat- ment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 2014; 15: 382-392.

Morgan XC, Tickle TL, Sokol H, et al. Dysfunction of the in- testinal microbiome in inflammatory bowel disease and treatment. Genome Biol 2012; 13: R79.

Darfeuille-Michaud A, Boudeau J, Bulois P, et al. High prevalence of adherent-invasive Escherichia coli associat- ed with ileal mucosa in Crohn’s disease. Gastroenterology 2004; 127: 412-421.

Kang S, Denman SE, Morrison M, et al. Dysbiosis of fecal microbiota in Crohn’s disease patients as revealed by a custom phylogenetic microarray. Inflamm Bowel Dis 2010; 16: 2034-2042.

Lule S, Colpak AI, Balci-Peynircioglu B, et al. Behcet Disease serum is immunoreactive to neurofilament medium which share common epitopes to bacterial HSP-65, a putative trigger. J Autoimmun 2017; 84: 87-96.

Consolandi C, Turroni S, Emmi G, et al. Behcet’s syn- drome patients exhibit specific microbiome signature. Autoimmun Rev 2015; 14: 269-276.

Gill T, Asquith M, Rosenbaum JT, et al. The intestinal microbiome in spondyloarthritis. Curr Opin Rheumatol 2015; 27: 319-325.

Bakland G, Nossent HC. Epidemiology of spondyloarthri- tis: a review. Curr Rheumatol Rep 2013; 15: 351.

Manasson J, Scher JU. Spondyloarthritis and the microbiome: new insights from an ancient hypothesis. Curr Rheumatol Rep 2015; 17: 10.

D’Amelio P, Sassi F. Gut Microbiota, Immune System, and Bone. Calcif Tissue Int 2018; 102: 415-425.

Sandhya P, Danda D, Sharma D, et al. Does the buck stop with the bugs?: an overview of microbial dysbiosis in rheumatoid arthritis. Int J Rheum Dis 2016; 19: 8-20.

Pepoyan AZ, Balayan MA, Atrutyunyan NA, et al. [Antibiotic Resistance of Escherichia Coli of the Intestinal Microbiota in Patients with Familial Mediterranean Fever]. Klin Med (Mosk) 2015; 93: 37-39.

Mkrtchyan H, Gibbons S, Heidelberger S, et al. characterisation and identification of acidocin LCHV, an antimicrobial peptide produced by Lactobacillus aci- dophilus n.v. Er 317/402 strain Narine. Int J Antimicrob Agents 2010; 35: 255-260.

Pepoyan AZ, Balayan MH, Manvelyan AM, et al. Lactobacillus acidophilus INMIA 9602 Er-2 strain 317/402 probiotic regulates growth of commensal Escherichia coli in gut microbiota of familial Mediterranean fever disease subjects. Lett Appl Microbiol 2017; 64: 254-260.

Geirnaert A, Calatayud M, Grootaert C, et al. Butyrate- producing bacteria supplemented in vitro to Crohn’s dis- ease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity. Sci Rep 2017; 7: 11450.

Bowman KA, Broussard EK, Surawicz CM. Fecal microbiota transplantation: current clinical efficacy and future pros- pects. Clin Exp Gastroenterol 2015; 8: 285-291.

Petrof EO, Gloor GB, Vanner SJ, et al. Stool substitute trans- plant therapy for the eradication of Clostridium difficile infection: ‘RePOOPulating’ the gut. Microbiome 2013; 1: 3.