Biyoimpedans İğne Probu ile Parçacık Boyut Tespiti

Amaç: Sunulan çalışmanın amacı Biyoimpedans iğne probunun in-vitro doku benzeri ortamında test edilmesidir. Çalışma Planı: Biyoimpedans iğne probu ile biyoimpedans cihazı bağlanmış ve kHz aralığında spektrumlar kaydedilmiştir. Prop 18Gauge 1.2x89 mm lomper ponksiyon iğnesi kullanılarak dizayn edilmiştir. Prob 1, 2 ve 4 mikrometre boyutundaki polistiren mikroküreciklerde kullanılarak impedans bilgisi kaydedilmiştir. Prob ile doku fantomuna akım gönderilmiş ve ortamın iletkenlik bilgisi elde edilmiştir. Bulgular: Biyoimpedans iğne probu ile elde edilen özel sinyaller ile parçacık boyutu ayrımı gerçekleştirilmiştir. Doku fantomundaki parçacık boyut bilgisi 50 kHz direnç değeri ile değerlendirilmiştir. Polistiren mikroküreciklerden alınan biyoimpedans spektrumlarına göre parçacık boyutunun artmasıyla direnç değeri artış göstermiştir. Sonuç: Probun doku fantomundaki parçacık boyut ayrımını doğru bir şekilde belirlemesi ileriki aşamalarda hastalardan alınan beyin omurilik sıvılarında kültüre gerek duyulmadan Escherichia coli veya Acinetobacter baumanni gibi farklı boyutlara sahip mikroorganizmaların varlığını gerçek zamanlı teşhis etme potansiyeli barındırmaktadır. Ayrıca probun hücre kültürü çalışmalarında da hücre sayısını ve ayrımını yapabilme olasılığı bulunmaktadır.

Particle Size Detection By Bioimpedance Needle Probe

Objectives: The aim of this study was to test the Bioimpedance probe needle on in-vitro tissue phantom. Study Design: Bioimpedance probe needle that was connected to a bioimpedance measurement device to record spectra in the kHz range. The probe consists of an 18Gauge 1.2x89 mm spinal needle. The probe was used for obtaining impedance information about the polystyrene microspheres which were in different diameters; 1, 2 and 4 micrometers. The current was transferred to the phantom and conductivity information was obtained by the probe. Results: Bioimpedance probe needle allows the discrimination of different particle sizes based on their specific signatures. The sensitivity of the probe to particle size in tissue phantom was tested during the study. Spectroscopic data were evaluated with resistance values at 50 kHz and the information about the particle size in the tissue phantom was obtained. Bioimpedance spectra results which were obtained from polystyrene microspheres showed that the resistance values were increasing while the size of the particle was enlarging. Conclusion: Due to the highly accurate differentiation of particle size in the tissue phantom, our probe has the potential to be used in the rapid detection of Escherichia coli or Acinetobacter baumannii which have different sized microorganisms in the tapped cerebrospinal fluid without being cultured in real time. In addition, it is possible for the probe to perform cell counting and differentiation in cell culture studies.

___

Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology. 1952;117:500-44. [CrossRef]

Schwan HP. Electrical properties of tissue and cell suspensions. Adv Biol Med Phys. 1957;5:147-209.

Lukaski HC. Biological indexes considered in the derivation of the bioelectrical impedance analysis. The American journal of clinical nutrition. 1996;64(3 Suppl):397S-404S. [CrossRef]

Selberg O, Selberg D. Norms and correlates of bioimpedance phase angle in healthy human subjects, hospitalized patients, and patients with liver cirrhosis. European journal of applied physiology. 2002;86:509-16. [CrossRef]

Rigaud B, Hamzaoui L, Frikha MR, Chauveau N, Morucci JP. In vitro tissue characterization and modelling using electrical impedance measurements in the 100 Hz-10 MHz frequency range. Physiol Meas. 1995;16(3 Suppl A):A15-28.

Suselbeck T, Thielecke H, Weinschenk I, Reininger-Mack A, Stieglitz T, Metz J, et al. In vivo intravascular electric impedance spectroscopy using a new catheter with integrated microelectrodes. Basic Res Cardiol. 2005;100:28-34. [CrossRef]

Brown BH, Tidy JA, Boston K, Blackett AD, Smallwood RH, Sharp F. Relation between tissue structure and imposed electrical current flow in cervical neoplasia. Lancet. 2000;355:892-5. [CrossRef]

Farre R, Blondeau K, Clement D, Vicario M, Cardozo L, Vieth M, et al. Evaluation of oesophageal mucosa integrity by the intraluminal impedance technique. Gut. 2011;60:885-92. [CrossRef]

Tyagi R, Mishra S, Misra R, Monga YP, Sharma A, Jain A. Bioelectric impedance phase angle as a diagnostic and prognostic marker in carcinoma tongue: A hospital-based study. Natl J Physiol Pharm Pharmacol. 2015;5. [CrossRef]

Gonzalez-Correa CA, Brown BH, Smallwood RH, Stephenson TJ, Stoddard CJ, Bardhan KD. Low frequency electrical bioimpedance for the detection of inflammation and dysplasia in Barrett’s oesophagus. Physiol Meas. 2003;24:291-6.

Lee BR, Roberts WW, Smith DG, Ko HW, Epstein JI, Lecksell K, et al. Bioimpedance: novel use of a minimally invasive technique for cancer localization in the intact prostate. Prostate. 1999;39:213-8.

Morimoto T, Kimura S, Konishi Y, Komaki K, Uyama T, Monden Y, et al. A study of the electrical bio-impedance of tumors. J Invest Surg. 1993;6:25-32.

Malich A, Fritsch T, Mauch C, Boehm T, Freesmeyer M, Fleck M, et al. Electrical impedance scanning: a new technique in the diagnosis of lymph nodes in which malignancy is suspected on ultrasound. Br J Radiol. 2001;74:42-7. [CrossRef]

Malich A, Fritsch T, Anderson R, Boehm T, Freesmeyer MG, Fleck M, et al. Electrical impedance scanning for classifying suspicious breast lesions: first results. Eur Radiol. 2000;10:1555-61. [CrossRef]

Halter RJ, Schned A, Heaney J, Hartov A, Schutz S, Paulsen KD. Electrical impedance spectroscopy of benign and malignant prostatic tissues. J Urol. 2008;179:1580-6. [CrossRef]

Haemmerich D, Staelin ST, Tsai JZ, Tungjitkusolmun S, Mahvi DM, Webster JG. In vivo electrical conductivity of hepatic tumours. Physiol Meas. 2003;24:251-60.

Faes TJ, van der Meij HA, de Munck JC, Heethaar RM. The electric resistivity of human tissues (100 Hz-10 MHz): a meta-analysis of review studies. Physiol Meas. 1999;20:R1-10.

Stoneman MR, Kosempa M, Gregory WD, Gregory CW, Marx JJ, Mikkelson W, et al. Correction of electrode polarization contributions to the dielectric properties of normal and cancerous breast tissues at audio/radiofrequencies. Phys Med Biol. 2007;52:6589-604. [CrossRef]

K’Owino IO, Sadik OA. Impedance Spectroscopy: A Powerful Tool for Rapid Biomolecular Screening and Cell Culture Monitoring. Electroanalysis. 2005;17:2101-13. [CrossRef]

Rothermel A, Nieber M, Muller J, Wolf P, Schmidt M, Robitzki AA. Real-time measurement of PMA-induced cellular alterations by microelectrode array-based impedance spectroscopy. Biotechniques. 2006;41:445-50. [CrossRef]

Varshney M, Li Y. Interdigitated array microelectrodes based impedance biosensors for detection of bacterial cells. Biosens Bioelectron. 2008;2951-60. [CrossRef]

Radke SM, Alocilja EC. A high density microelectrode array biosensor for detection of E. coli O157:H7. Biosens Bioelectron. 2005;20:1662- 7. [CrossRef]

Acıbadem Üniversitesi Sağlık Bilimleri Dergisi-Cover
  • ISSN: 1309-470X
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2010
  • Yayıncı: ACIBADEM MEHMET ALİ AYDINLAR ÜNİVERSİTESİ