Sn-Cu/KNT Kompozit Kaplamaların Pulse Elektro-biriktirme ile Üretimine Akım Yoğunluğunun Etkisi

Li iyon piller günümüzde artan bir ilgi ile taşınabilir elektronik cihazlar için yeniden şarj olabilir piller olarak ana güç kaynağı olmaya başlamışlardır. Ancak ticari pillerde anot malzemesi olarak kullanılan grafitin yeterli performans sergileyememesinden dolayı alternatif arayışları devam etmektedir. Bu nedenle alaşım matrisli kompozit anotların kullanımına yönelik çalışmalar yapılmaktadır. Bu çalışmada da Sn-Cu matrisli KNT takviyeli kompozit anotlar pulse elektro biriktirme ile üretilmiş olup, akım yoğunluğunun etkisi incelenmiştir. Sn-Cu/KNT kompozitleri pirofosfat banyosunda bakır altlık üzerine pulse elektrokompozit kaplama tekniği ile hazırlanmıştır. Üretilen kompozit malzemeler CR2016 buton pilinde anot olarak kullanılarak elektrokimyasal olarak test edildi. Anot malzemelerinin fiziksel ve elektrokimyasal özellikleri çeşitli analiz teknikleri kullanılarak araştırıldı. Sonuçlara göre, kesikli akım (PC) elektrokompozit kaplamada en iyi çevrim performansını 80 mAcm-2 akım yoğunluğu ile üretilen Sn-Cu/KNT kompozit anot göstermiştir

Effect of Current Density on Production of Sn-Cu/CNT Composite Coatings By Pulse Electrodeposition

Li ion batteries have started to become the main power source as batteries that can be recharged for portable electronic devices with an increasing interest nowadays. However, since the graphite used as an anode material in commercial batteries cannot exhibit sufficient performance, alternate quests continue. For this reason, studies are being made for the use of alloyed matrix composite anodes. In this study, composite anode with Sn-Cu matrix is fabricated by pulse electrodeposition and the effect of current density is investigated. Sn-Cu /CNT composites were prepared by electroplating on a copper substrate in a pyrophosphate bath. Composite materials produced were electrochemically tested as anode in CR2016 button cell. The physical and electrochemical properties of anodic materials were investigated using various analysis techniques. According to the results, the Sn-Cu /CNT composite anode showed the best cycle performance in the pulse current (PC) electrocomposite coating with a current density of 80 mAcm-2.

___

  • UYSAL, M., CETINKAYA, T., ALP, A., AKBULUT, H. Active and inactive buffering effect on the electrochemical behavior of Sn–Ni/MWCNT composite anodes prepared by pulse electrodeposition for lithium-ion batteries J. Alloys Compd 645:235–242 2015
  • ZHU, J., WANG, D., LIU, T., GUO, C. Preparation of Sn-Co-graphene composites with superior lithium storage capability, Electrochimica Acta, 125; 347-353 2014.
  • POLAT, B.D., ABOUIMRANE, A., SEZGIN, N., KELES, O., AMINE, K. Use of Multilayered Ni-Sn and Ni-Sn-C Thin Film Anodes for Lithium-Ion Batteries, Electrochimica Acta, 135; 585-593 2014.
  • UYSAL, M., CETINKAYA, T., ALP, A., AKBULUT, H. Fabrication of Sn–Ni/MWCNT composite coating for Li-ion batteries by pulse electrodeposition: Effects of duty cycle, Applied Surface Science, 334;80-86 2015
  • THACKERAY, M. M., Structural Considerations of Layered and Spinel Lithiated Oxides for Lithium Ion Batteries. J. Electrochem. Soc., 142: 2558-2563, 1995.
  • WEİHUA, P., XİANGMİNG, H., JİANGUO, R., CHUNRONG, W., CHANGYİN, J., Electrodeposition of Sn–Cu alloy anodes for lithium batteries. Electrochimica Acta, 50:4140–4145, 2005.
  • DO H.N., RYOUNG H.K., DONG W.H., HYUK S.K., Electrochemical performances of Sn anode electrodeposited on porous Cu foam for Li-ion batteries. Electrochimica Acta, 66:126-132, 2012.
  • GUL, H., UYSAL, M., CETINKAYA, T., GULER, M.O., ALP, A., AKBULUT, H., Preparation of Sn-Co alloy electrode for lithium ion batteries by pulse electrodeposition. Int.J. hydrogen energy, 39:21414-21419, 2014.
  • QIANLEI, J., RUISHENG X., MENGQIU J.,Electrochemical performance of Sn–Sb–Cu film anodes prepared by layer-by-layer electrodeposition. Applied Surface Science, 258:3854–3858, 2012.
  • NORIYUKI, T., RYUJI, O., MASAHISA, F., SHIN, F., MARUO, K., IKUO Y., Study on the anode behavior of Sn and Sn-Cu alloy thin-film electrodes. J Power Sources, 107:48-55, 2002
  • KEPLER, K.D., VAUGHEY, J.T., THACKERAY, M.M., Copperetin anodes for rechargeable lithium batteries: an example of the matrix effect in an intermetallic system. J Power Sources, 81-82:383-7, 1999.
  • SHENG, L., QI L., YUXI, C., FENGJU, Z., Carbon-coated copperetin alloy anode material for lithium ion batteries. J Alloys Compd, 478:694-8, 2009.
  • YANG, J., TAKEDA, Y., IMANISHI, N., XIE, J.Y., YAMAMOTO, O., Intermetallic SnSb compounds for lithium insertion hosts. Solid State Ionics, 133:189-94, 2000.
  • CYRIL, M., MOULAY, T.S., DARWICHE, A., JULIEN, F., BERNARD, F., JEAN, C.J., Study of the series Ti1_y NbySnSb with 0 _ y_1 as anode material for Li-ion batteries. J Power Sources, 244:736-41, 2013.
  • BO-OK, J., SEOK-HWAN, P., WAN-JIN, L., Electrospun Co-Sn alloy/carbon nanofibers composite anode for lithium ion batteries. J Alloys Compd, 574:325-30, 2013.
  • JUNGWON, P., JIYONG, E., HYUK, S.K., Fabrication of Sn–C composite electrodes by electrodeposition and their cycle performance for Li-ion batteries. Electrochemistry Communications., 11:596–598, 2009.
  • GÜL, H., AKBULUT, H., ASLAN, S., ALP, A. Effect of reciprocating sliding speed on the tribological performance of nano SiCp reinforced Ni-metal matrix composites produced by electrocodeposition, Journal of Nanoscience and Nanotechnology, 12; 9076-9087 2012.
  • STROUMBOULI, M., GYFTOU, P., P AVLATOU, E. A., PYRELLIS, N. S., Codeposition of ultrafine WC particles in Ni matrix composite electrocoatings. Surface & Coatings Technology, 195 : 325-332, 2005.
  • DONG, Y.S., LIN P.H., WANG, H.X., Electroplating preparation of Ni–Al2O3 graded composite coatings using a rotating cathode. Surface & Coatings Technology, 200:3633-3636, 2006.
  • UYSAL, M., CETİNKAYA, T., KARTAL, M., ALP, A., AKBULUT, H., Production of Sn–Cu/MWCNT composite electrodes for Li-ion batteries by using electroless tin coating. Thin Solid Films 572:216-223, 2014
  • SUNG-KYU, K., SUNG, T., Electrodeposition behavior and characteristics of Ni-carbon nanotube composite coatings. Transactions of Nonferrous Metals Society of China, 21:68-72, 2011.
  • ASHUTOSH S., SUMIT B., RANJAN S., REDDY BSB., FECHT HJ, KARABI, D., Siddhartha D. Influence of current density on microstructure of pulse electrodeposited tin coatings. Materials Characterization, 68:2-32, 2012.
  • SHI L., SUNA CF., GAO P., ZHOU F., LIU WM., Electrodeposition and characterization of Ni–Co–carbon nanotubes composite coatings. Surface & Coatings Technology, 200, 4870-4875, 2006.
  • CHEN X.H., CHEN C.S., XIAO H.N., CHENG F.Q., ZHANG G., YI G.J., Corrosion behavior of carbon nanotubes–Ni composite coating. Surface & Coatings Technology., 191:351-356, 2005.
  • CHEN X.H., CHENG F.Q., LI S.L., ZHOU L.P., LI D.Y., Electrodeposited nickel composites containing carbon nanotubes. Surface and Coatings Technology, 155, 274–278, 2002.
  • YUN-XIAO W., LING H., YU-QING C., FU-SHENG K., JUN-TAO L., SHI-GANG S.,Fabrication and electrochemical properties of the Sn–Ni–P alloy rods array electrode for lithium-ion batteries. Electrochemical Community, 12:1226–1229, 2010.
  • UYSAL M., GUL H., ALP A., AKBULUT H., Sn-Ni/MWCNT nanocomposite negative electrodes for Li-ion batteries: The effect of Sn:Ni molar ratio. International Journal of Hydrogen Energy, 39:21391-21398, 2014
  • UYSAL M., ÇETINKAYA T., KARSLIOĞLU R., ALP A., AKBULUT H., Production of Sn/MWCNT Nanocomposite Anodes by Pulse Electrodeposition for Li-ion Batteries. Applied Surface Science, 290:6-12, 2014.
  • HUI, W., ZHEWEI, C., MENGQI, Y., JIANMING, W., JIANQING, Z., Highly ordered nanoporous Sn-Ni alloy film anode with excellent lithium storage performance. Materials Letters, 138:139-142, 2015.
  • JEONG-HOON, J., WON-SIK, K., SEONG-HYEON, H., Electrochemical deposition of nanodendritic Sn/Cu6Sn5 foam. Materials Letter., 138:33-36, 2015.