Lityum İyon Piller İçin Sn-Cu/rGO (İndirgenmiş Grafen Oksit) Anot Malzemelerin, Karakterizasyonu ve Elektrokimyasal Özellikleri

Lityum iyon pilleri uzun kullanım ve raf ömrü, geniş kullanım sıcaklık aralığı, hızlı şarj edilebilirlik, yüksek enerji verimliliği gibi özellikleriyle son zamanlarda öne çıkan güç kaynaklarındandır. Grafite alternatif olarak kalay esaslı elektrot malzemeleri yüksek kapasite değerlerinden dolayı ilgi çekicidir. Ancak şarj/deşarj esnasında kalay esaslı elektrot malzemesinin karşılaştığı en büyük problem hacim genleşmesidir. Bu problemi aşmaya yönelik olarak aktif veya inaktif malzeme ile birleştirilerek değiştirilebilir. Sn, Sn-Cu ve Sn-Cu/rGO tozları kimyasal indirgeme yöntemi ile Li iyon piller için anot malzemesi olarak üretilmiştir. Sn, Sn-Cu ve Sn-Cu/rGO tozların mikroyapı incelemeleri taramalı elektron mikroskobu (SEM) ile gerçekleştirilmiştir. Enerji dağılım X-ışınları spektroskopisi (EDS) ile Sn-Cu/rGO kompozit tozlarının elementel analizleri yapılmıştır.. Üretilen Sn, Sn-Cu ve Sn-Cu/rGO tozlar bakır akım toplayıcı üzerinde elektrot olarak hazırlanmış ve CR2016 düğme tipi hücreler kullanılarak 200 mA/g sabit akım yoğunluğunda elektrokimyasal testleri gerçekleştirilmiştir. Elektrokimyasal test sonuçlarına göre, Sn-Cu/rGO kompozit anot malzemesi Sn ve Sn-Cu elektrotlara göre daha iyi elektrokimyasal performans göstermiş ve 100 çevrim sonunda yaklaşık 430 mAh/g deşarj kapasitesi elde edilmiştir.

Characterization and Electrochemical Properties of the Sn-Cu/Rgo (Reduced Graphene Oxide) Anode Materials for Lithium Ion Batteries

Li-ion batteries are the most studied power sources because of the properties of long cycle and shelf life, broad temperature range of operation, rapid charge capability and high coulombic and energy efficiency. Recently, there has been tremendous interest and effort to the synthesis of tin-based compounds as alternatives to graphite materials, with the aim of improving the capacity and energy density of lithium ion batteries. However, a large specific volume changing occurs during Li insertion and extraction reactions, which causes the electrode to fail by pulverization. Therefore, the main issue on the improvement of the Sn cycle performance is how to overcome the volume change and prevent the pulverization of particles. Sn, Sn-Cu and Sn-Cu / rGO powders were produced as anode material for Li ion batteries by chemical reduction method. Microstructural characterization of Sn, Sn-Cu ve Sn-Cu/rGO were carried out using scanning electron microscopy (SEM) Elemental analyses of Sn-Cu/rGO composite powders were performed using energy dispersive X-ray spectroscopy (EDS). Produced Sn, Sn-Cu ve Sn-Cu/rGO anode materials were prepared as an electrode on the copper current collector and electrochemical tests were carried out using CR2016 button cells at 200 mA/g constant current density. According to the electrochemical test results, Sn-Cu / rGO composite anode material showed better electrochemical performance than Sn and Sn-Cu anode materials and discharge capacity of about 430 mAh g was obtained after 100 cycles.

Kaynakça

[1] Uysal M., Lityum İyon Piller İçin Kesikli Akim Yöntemi İle Kalay Esasli Kompozit Anotlarin Geliştirilmesi Doktora Tezi Sakarya Üniversitesi, Türkiye, 2015

[2] Zhou S., Nanonet-Based Materıals For Advanced Energy Storage Doctor of Philosophy Boston College The Graduate School of Arts And Sciences Department of Chemistry, USA, 2012.

[3] Denizli F., Lityum İyon Pilleri İçin Elektron Demeti İle Fiziksel Buhar Biriktirme (Ebpvd) Yöntemi Kullanılarak İnce Film Anot Malzemesi Üretimi Ve Karakterizasyonu Yüksek Lisans Tezi İstanbul Teknik Üniversitesi, Türkiye, 2011.

[4] Alaf M., Lityum İyon Piller İçin Sn/SnO2/Knt Kompozit Anotlarının Geliştirilmesi Doktora Tezi Sakarya Üniversitesi, Türkiye, 2014

[5] Leite E.R., Nanostructured Materials for Electrochemical Energy Production and Storage, Springer, New York, 2009.

[6] Subrahmanyam G., Ermanno M., Francesco De A., Enzo Di F., Remo Proietti Z., Claudio C., Review on Recent Progress of Nanostructured Anode Materials For Li-Ion Batteries, Journal of Power Sources 257, 421-443, 2014.

[7] Marom R., Amalraj S.F., Leifer N., Jacob D., Aurbach D., A Review of Advanced and Practical Lithium Battery Materials, Journal of Materials. Chemistry, 21, 9938-9954, 2011.

[8] Wachtler M., Winter M., and Besenhard J. O., Anodic Materials For Rechargeable Li-Batteries. Journal of Power Sources. 105, 151-160, 2002.

[9] Scrosati B., Garche J., Lithium Batteries: Status, Prospects and Future Journal of Power Sources, 195, 2419-2430, 2010..

[10] Junsheng Z., Dianlong W., Tiefeng L.Chenfeng G.Preparation Of Sn-Co-Graphene Composites With Superior Lithium Storage Capability Electrochimica Acta, 125, 347-353,2014

[11] Mao, O., Turnerb, R.L., Courtneya, I.A., Fredericksen, B.D., Buckett, M.I., Krause, L. J., Dahn, J.R., Active/Inactive Nanocomposites As Anodes For Li - Ion Batteries, Journal of Electrochem. Society 2, 3-5, 1999.

[12] Junsheng Z, Guangzhou H, Jin Z Preparation Of Sn-Cu-Graphene Nanocomposites with Superior Reversible Lithium Ion Storage Materials Letters, 185, 565-568,2016

[13] Huan W, Xu L, Montgomery B-F, Placidus B A 3d Graphene-Based Anode Materials for Li-Ion Batteries Current Opinion in Chemical Engineering, 13, 124-132 ,2016

[14] Xiaoqiu C, Qiang R, Zhen W, Xianhua H, Shejun H Ternary Sn-Sb-Co Alloy Particles Embedded In Reduced Graphene Oxide As Lithium Ion Battery Anodes Materials Letters, 191, 218- 221,2017

[15] Jizhang C, Li Y, Shaohua F, Zhengxi Z, ShinIchi H Facile Fabrication Of Graphene/Cu6sn5 Nanocomposite As The High Performance Anode Material For Lithium Ion Batteries Electrochimica Acta, 105, 629-634,2013

[16] Zhao H., Jiang C., He X., Ren J., Wan C., Advanced Structures in Electrodeposited Tin Base Anodes for Lithium Ion Batteries, Electrochim. Acta, 52, 7820-7826, 2007.

[17]Junsheng Z, Anmin L, Dianlong W Study On The Synergistic Lithium Storage Performance of Sn/Graphene Nanocomposites Via Quantum Chemical Calculations And Experiments Applied Surface Science, 416, 751-756,2017

[18]Uysal M, Cetinkaya T. Alp A, Akbulut H Fabrication Of Sn-Ni/Mwcnt Composite Coating For Li-Ion Batteries By Pulse Electrodeposition: Effects of Duty Cycle Applied Surface Science, 334, Pages 80-86,2015

[19]Uysal M, Cetinkaya T, Kartal M. Alp A, Akbulut H Production Of Sn-Cu/Mwcnt Composite Electrodes For Li-Ion Batteries by Using Electroless Tin Coating Thin Solid Films, 572, 216-223,2014

[20] Peter, B.G., Bruno, S., Jean-Marie, T., Nanomaterials for Rechargable Lithium Batteries. Angewandte Chemie, 47, 2-19, 2008.

[21] Qin J, He C, Zhao N, Wang Z, Shi C, Ez Liu, Li J Graphene Networks Anchored With Sn Graphene As Lithium Ion Battery Anode, Acs Nano 8 (2), 1728-1738,2014

[22]Peng H, Li R, Hu J, Deng W, Pan F Core-Shell Sn-Ni-Cu-Alloy Carbon Nanorods to Array As Three-Dimensional Anode by Nanoelectrodeposition for High-Performance Lithium Ion Batteries - Acs Applied Materials, 8 (19), 12221-12227,2016

Kaynak Göster