2, 10, 16, 24-Tetrakis 4- (2-fenoksi-l, 3-diokso-2,3-dihidro-lH-inden-2-iloksi) ftalonitril içeren kobalt (II) bileşiğinin DNA bağlanmasının spektroskopik yöntemler ile araştırılması

2,10, 16, 24-tetrakis 4- (2-fenoksi-1,3-diokso-2,3-dihidro-lH-inden-2-iloksi) ftalonitril içeren önceden sentezlenmiş kobalt (II) bileşiğinin (PcCo) CT-DNA ile bağlanma özellikleri UV/Vis absorpsiyon, floresan titrasyonu yöntemleri kullanılarak bağlanma özelliklerini belirlemek için araştırıldı. DMF çözücü ortamında ve DNA'nın yokluğunda, PcCo'nun absorpsiyon titrasyon spektrumu, Q-band için yaklaşık 670 nm'de pik ve B -bandı için 340 nm de pik verir. Calf thymus-DNA, PcCo varlığında PcCo'nun emisyon yoğunluğu yaklaşık 545 nm'de emisyona neden olur. Termal denatürasyon profili çalışması UV-Vis spektroskopik tekniği ile sistematik olarak incelenmiş ve Co (II) ftalosiyanin bileşiği için erime noktası sıcaklık değeri 7.87 oC civarında bulunmuştur. CTDNA yokluğunda ve varlığında PcCo'in redüksiyon oksidasyon davranışı, dönüşümlü voltametri (CV) ile incelendi. PcCo için katodik pik ve anodik pik potansiyelleri, EPc için 0.84, -0.36 V ve 0.88 V, 0.15 V ve EPa için -0.69 V olarak kaydedildi. Dönüşümlü (cyclic) voltametri sonuçlar, bir yarı-tersinir redaksiyon oksidasyon dalgasını göstermektedir. Epc ve Epa potansiyelindeki değişim, PcCo'in CT-DNA'yla güçlü etkileşim gösterdiğini önermektedir. PcCo'in CT-DNA ile olan etkileşimi ayrıca jel elektroforez yöntemi kullanılarak araştırılmıştır. Jel elektroforezi sonuçları, CT-DNA bantlarının yoğunluğunda azalma olduğunu gösterdi. Tüm bulgular, PcCo ile CT-DNA molekülü arasındaki etkileşimin interkalatif bağlanma türü olduğunu göstermektedir.

DNA-binding and spectroscopic studies of cobalt (II) compound containing 2, 10, 16, 24-tetrakis 4-(2-phenoxy-1, 3-dioxo-2, 3-dihydro-1H-inden-2- yloxy) phthalonitrile

In this study, binding activities of the previously synthesized cobalt (II) compound (PcCo) with calf thymus-DNA containing 2, 10, 16, 24-tetrakis 4-(2-phenoxy-1, 3-dioxo-2, 3-dihydro-1H-inden-2-yloxy) phthalonitrile were investigated to determine binding activities by using UV-Vis absorption, fluorescence titration methods. Absorption titration spectra of PcCo in DMF give peaks at about 670 nm for Q-band absorption and about 340 nm for B-band absorption in the absence of calf thymus-DNA. Emission intensities of PcCo in presence of calf thymus-DNA, PcCo gives emission at about 545 nm. Thermal denaturation profile study was systematically studied by UV/Vis spectroscopic technique and melting point temperaturewas found around 7.87 oC for Co (II) phthalocyanine compound. The reduction oxidation behavior of PcCo with calf thymus-DNA was investigated using cyclic voltammetry (CV). Cathodic peak potential and anodic peak potential for PcCo were recorded to be 0.84, -0.36 V for EPc and 0.88 V, 0.15 V, and -0.69 V EPa. The cyclic voltammetric results show one halfreversible reduction oxidation wave. The shift in Epc and Epa potentials indicates that PcCo shows strong interaction with calf thymus-DNA. Further to understand binding activities of PcCo with calf thymus-DNA was studied by using electrophoresis technique. Electrophoresis findings showed that there is decrease in the intensity of CT-DNA bands. All the findings show that PcCo interacts strongly with DNA molecule via an intercaltion binding.

___

  • 1] C.C. Leznoff, A.B.P. Lever, ´´Phthalocyanines Properties and Applications´´ New York, WileyVCH, New York, Vol. 4, pp-79-181, 1996.
  • [2] N.B. McKeown, ´´Phthalocyanines Materials: Synthesis, Structure and Functions´´ Cambridge, MA: Cambridge University Press. 1998.
  • [3] M.S. Agırtas, A. Altındal, B. Salih, S. Saydam, O. ´´Bekaroglu, Synthesis, characterization, and electrochemical and electrical properties of novel mono and ball-type mettalophthalocyanines with four 9,9-bis(4-hydroxyphenyl)fluorine´´ Dalton Trans., Vol. 40, pp. 3315-3324, 2011.
  • [4] Y. Peng, H. Zhang, H. Wu, B. Huang, L. Gan, Z. Chen, ´´The synthesis and photophysical properties of zinc (II) phthalocyanine bearing poly (aryl benzyl ether) dendritic substituents´´ Dyes and Pigments, Vol. 87, pp. 10-16, 2010.
  • [5] M.S. Agırtas, ´´Synthesis and characterization of novel symmetrical pthalocyanines substituted with four benzo [d]>[1,3] dioxol-5-ylmethoxy groups´´ Inorg.chim. Acta., Vol. 360, pp. 2499-2502, 2007.
  • [6] J-D. Wang, M-J. Lin, S-F. Wu, Y. Lin, ´´15-Bis (2,2,4-trimethylpentoxy)phthalocyanine, a transform nonperipheral disubstituted phthalocyanines synthesis by the cross condensation method´´ J. Organomet. Chem., Vol. 691, pp. 5074-5076, 2006.
  • [7] M. Kandaz, O. Bekaroglu, ´´Synthesis and characterization of novel actakis (2-aminophenoxy and aminophenylsulfanyl)-substituted metallophthalocyanines´´ Chem. Ber./Recueli., Vol. 130, pp. 1833-1836, 1997.
  • [8] N. Nombona, E. Antunes, T. Nyokong, ´´The sysnthesis and fluorescence behavviour of phthalocyanines unsymmetrically substituted with naphthol and carboxy groupss´´ Dyes and Pigments, Vol.86, pp. 68-73, 2010.
  • [9] O. Bekaroglu, ´´Ball-type phthalocyanines: synthesis and properties´´ Struct. Bond., Vol. 135, pp. 105-136, 2010.
  • [10] G. Keser Karaoglan, G. Gumrukcu, A. Koca, A. Gul, ´´The synthesis, characterizatio, electrochemical and spectroelectrochemical properties of a novel, cationic, water-soluble Zn phthalocyanine extended conjugation´´ Dyes and Pigments, Vol. 88, pp. 247-256, 2011.
  • [11] A.G. Gurek, V. Ahsen, A. Gul, O. Bekaroglu, ´´Synthesis and characterization of a new copper (II) phthalocyaninato substituted with four 15- membered tetraazamacrocycles and its water soluble pentanuclear complexes´´ J. Chem. Soc., Dalton Trans., pp. 3367-3371, 1991.
  • [12] E. Ben-Hur, R.C. Hoeben, H. Van Ormondt, T.M.A.R. Dubbelman, J. Van Steveninck, ´´Inactivation of retroviruses by phthalocyanines: the effects of sulphonation, metal ligand and fluoride´´J. Photochem. Photobiol. B: Biol., Vol. 13, pp. 145-152, 1992.
  • [13] J.D. Spikes, ´´Phthalocyanines as photosensitizers in biological systems Phthalocyanines as photosensitizers in biological systems and for the photodynamic therapy of tumors´´ Photochem. Photobiol., Vol. 43, pp. 691- 699, 1986.
  • [14] J. Ferlay, I. Soerjomatarm, R. Dikshit, R. Eser, C. Mathers, M. Rebelo, D.M. Parkin, D. Forman, F. Bray, ´´Cancer incidence and mortality worlwide: sources, methods and major patterns in Globocan´´ Int. J. Canc., Vol. 136, pp. 359-86, 2015.
  • [15] R. Gul, A. Badshah, A. Khan, A. Junaid, M.K. Rauf, ´´Preliminary investigation of anticancer activitiy by determining the DNA binding and antioxidant potency of new ferrocene incorporated N,N',N''-trisubstituted phenylgunidines´´ Spectrochim Acta Part A Mol. Biomol. Spect., Vol. 117, pp. 264-9, 2014.
  • [16] C. Uslan, B.S. Sesalan, ´´The synthesis, photochemical and biological properties of new silicon phthalocyanines´´ Inorg. Chim. Acta, Vol. 394, pp. 353-62, 2013.
  • [17] T. Keles, B. Barut, Z. Biyiklioglu, A. Özel, ´´A comparative study on DNA/BSA binding, DNA phorocleavage and antioxidant activities of water soluble peripherally and non-peripherally tetra-3- pyridin-3-ylpropoxy-substituted Mn (III), Cu (II) phthalocyanines´´ Dyes and Pigments, doi: 10.1016/j.dyepig. 2016.12.045, 2017.
  • [18] S.M. Pradeepa, H.S. Bhojya Naik, B. Vinay Kumar, K. Indira Priyadarsini, A. Barik, S. Jayakumar, ´´Synthesis and characterization of cobalt(II), nickel(II) and copper(II)-based potential photosensitizers: Evaluation of their DNA binding profile, cleavage and Photocytotoxicity´´ Inorg. Chim. Acta, Vol. 428, pp. 138-46, 2015.
  • [19] B. Zheng, X. Shen, D. Zhao, Y. Cai, M. Ke, J. Huang, ´´Silicon (IV) phthalocyanines substituted axially with different nucleoside moieties. Effects of nucleoside type on the photosensitizing efficiencies and in vitro photodynamic activities´´ J. Photochem. Photobiol. B: Biol., Vol. 159, pp. 196-204, 2016.
  • [20] L. Xodo, S. Cogoi, V. Rapozzi, ´´Photosensitizers binding to nucleic acids as anticanceragents´´ Fut. Med. Chem., Vol. 8, pp. 179-94, 2016.
  • [21] M.S. Ağırtaş, İ. Gümüş, M. S. İzgi, ´´Designing of new thermo stabile phthalocyanines: synthesis, characterization, and thermal studies´´ Synthesis and Reactivity in Inorganic, Metal-Organic, and NanoMetal Chemistry, Vol. 42, pp. 1327-1333, 2012.
  • [22] J. Bolger, A. Gourdon, E. Ishow, J. P. Launay, ´´Mononuclear and Binuclear Tetrapyrido[3,2- a:2',3'-c:3'',2''-h:2''',3'''-j]phenazine (tpphz) Ruthenium and Osmium Complexes´´Inorg. Chem., Vol.35, pp. 2937-2944, 1996.
  • [23] A. S. Azza, M. S. Mohamed, ´´DNA binding, spectrocopic and antimicrobial studies of palladium (II) complexes containin 2,2o -bipyridin and 1- phenypiperazine´´ Spectrochim. Acta Part A Mol. Biomol. Spect., Vol. 96, pp. 586-593, 2012.
  • [24] M. Özçesmeci, Ö. B. Ecevit, S. Sürgün, E. Humuryudan, ´´Tetracationic fluorinated zinc (ii) phthalocyanine: Synthesis, characterization and DNA-binding properties´´ Dyes and Pigments, Vol. 96, pp. 52-58, 2013.
  • [25] P.R. Reddy, A. Shilpa, N. Raju, P. Raghavaiah, ´´Synthesis, structure, DNA binding and cleavage properties of ternaryamino acid Schiff basephen/bipy C(II) complexes´´ J. Inorg. Bioochem., Vol. 105, pp. 1603-1612, 2011.
  • [26] A. Apilux, O. Tabata MChailapakul, ´´Electrochemical bihaviors of native and thermal denatured fish DNA in the presence of cytosine derivatives and porphyrin by cyclic voltammetry using boron-drobed diamond electrode´´ Bioelectrochemistry, Vol. 70, pp. 435-439, 2007.
  • [27] N. Demirezen, D. Tarınc, D. Polat, M. Cesme, A. Golcu, M. Tumer, ´´Synthesis of trimethoprim metal complexes: Spectral, electrochmical, thermal, DNA-binding and surface morp hology studies´´ Spectrochimica Acta Part A, Vol. 94, pp. 243-255, 2012.
  • [28] X-W. Liu, Y-M. Shen, Z-X. Li, X. Zhong, YD. Chen, S-B. Zhang, ´´Study on DNA binding behavior and light switch effect of new coumarinderived Ru (II) complexes´´ Spectrochim. Acta Part: Mol. Biomol. Specrt., Vol. 149, pp. 150-156, 2015.
  • [29] C. Ozluer, H. E. Satana Kara, ´´In vitro DNA binding studies of anticancer drug idarubicin using spectroscopic techniques´´ J. Photochem. Photobiol. B., Vol. 138, pp. 36-42, 2014.
  • [30] A. Özel, B. Barut, Ü. Demirbaş, Z. Biyiklioglu, "Invetigation of DNA binding, DNA photocleavage, topoisomerase I inhibition and antioxidant activities of water soluble titanium (IV) phthalocyanine compounds" J. Photoch. Photobiol. B. Biology, Vol. 157, pp.32-38, 2016.
  • [31] S. Mahadevan, M. Palaniandavar, ´´Spectroscopic and voltametric studies on copper complexes of 2,9-dimethyl-1,10-phenanthrolines bound to calf thymus DNA´´ J. Inorg. Chem., Vol. 37, pp. 693-706, 1998.
  • [32] M. Sirajuddin, S. Ali, A. Badshah, ´´Drug-DNA interactions and their study by UV-Visible, fluorescence spectroscopies and cyclic voltametry´´ J. Photochem. Photobiol. B. Biology, Vol. 124, pp. 1-19, 2013.
  • [33] Y.M. Song, P.J. Yang, M.L. Yang, J.W. Kang, S.Q. Qin, B.Q. Lu, ´´Spectroscopic and voltammetric studies of the cobalt (II) complexe of morin bound to cvalf thymus DNA´´ Transition Met. Chem., Vol. 28, pp. 712- 721, 2003.
  • [34] S.S. Zhang, S. Y. Niu, B. Qu, G.B. Jie, H. Xu, C.F. Ding, ´´Studies on the interaction mechanism between hexakis(imidazole) manganese (II) terephthalate and DNA and preparation of DNA electrochemical sensor´´J. Inorg. Biochem., Vol. 99, pp. 2340-2347, 2005.
  • [35] M.T. Cater, M. Rodriguez, A.J. Bard, ´´Voltammetric studies of the interaction of metal chelated with DNA. 2. Tris-chelated complexes of cobalt (III) and iron (II) with 1,10-phenanthroline and 2, 20- bipryridine´´J. Am. Chem. Soc., Vol. 111, pp. 8901-8911, 1989.
  • [36] P. Pravin, P.P. Utthra, G. Kumaravel, N. Raman, ´´Effective DNA binding and cleavage tendencies of malonic acid coupled transition metal complexes´´ J. Mol. Struc., Vol. 1123, pp. 162-70, 2016.
  • [37] L. Hassani, F. Hakimian, E. Safaei, Z. Fazzeli, ´´Antibacterial effect of cationic porphyrazines and anionic phthalocyanine and their interaction with plasmid DNA´´ J. Mol. Struc., 1052, 221-227, 2013.
  • [38] M.M. Al-Mogren, M.A. Alaghaz, E.A. Ebrahem, ´´Synthesis, spectroscopic, molecular orbital calculation, cytotoxic, molecular docking of DNA binding and DNA cleavage studies of of transition metal complexes with N-benzylidene-N´- salicylidene-1,1-diaminopropane´´ Spectrochim. Acta Part A Mol. Biomol. Spectr., Vol. 114, pp. 695- 707, 2013.