Remineralizasyon materyalleri ve teknolojilerine güncel bakış

Toplumda oldukça yüksek oranda görülen diş çürüğünün önlenmesindeki en önemli koruyucu uygulama remineralizasyon tedavileridir. Florürün remineralizasyon tedavilerindeki başarısı çok sayıdaki çalışma tarafından kanıtlanmıştır ve hala altın standart olarak kabul görmektedir. Ancak olası yan etkileri nedeniyle araştırmacılar kullanılan florür konsantrasyonlarını azaltabilmek için, florürün etkinliğini arttırabilecek ya da florüre alternatif olabilecek yeni remineralizasyon yöntemlerinin arayışına girmiştir. Gelişen diş hekimliği teknolojileri remineralizasyonu artıran ve demineralizasyonu önleyen yeni materyal ve yöntemler bulunmuştur. Güncel yöntem ve teknolojiler mineral doygunluğunu arttıran materyalleri, mine ve dentinin rejenerasyonunu sağlayabileceği düşünülen biyomimetikleri, ozon ve lazer uygulamalarını, çürüğe neden olan bakteri plağını modifiye edebilen kimyasalları, çürük etkeni bakterilere etkili antiseptikleri ve remineralizasyonu arttırma potansiyeli olan doğal ürünleri içermektedir. Bu güncel yöntemlerin bazıları ile ilgili araştırmalar kısıtlı ve hala başlangıç seviyesinde iken bazılarının remineralizasyon etkinliği ile ilgili güçlü kanıtlar bulgulanmıştır. Bu derlemenin amacı; remineralizasyon tedavilerindeki güncel ve gelişen teknolojileri, bu yöntemlerin etki mekanizmalarını, remineralizasyon etkinliklerini ve klinik uygulamalarını, konuyla ilgili yapılan bilimsel araştırmaların sonuçları doğrultusunda değerlendirmek ve özetlemektir.

Current overview of remineralization materials and technologie

Remineralization therapies are the most important conservative applications in the prevention of dental caries. The success of fluoride in remineralization treatments has been proven by numerous studies and fluoride is still considered the gold standard. However, due to possible side effects, researchers have been researching new methods of remineralization that may increase the efficacy of fluoride or may be an alternative to fluoride in order to reduce the fluoride concentrations used. With the developing dental technologies, new materials and methods which increase remineralization and prevent demineralization have been found. These methods and technologies include materials that increase mineral saturation, biomimetics capable of regeneration of enamel and dentin, ozone and laser applications, bacterial plaque modifiers, antiseptics and natural products that have the potential to increase remineralization. Although, there is limited research on certain methods which is still in the initial phase, remineralization efficacy of others has been discovered with strong evidences. The purpose of this review is to evaluate and summarize the current technologies and developments in remineralization therapies, their mechanisms of action, their efficacy and clinical applications, in line with the results of scientific research.

___

  • 1. Yon MJY, Gao SS, Chen KJ, Duangthip D, Lo ECM et al. Medical Model in Caries Management. Dent J. 2019;7(2):37.
  • 2. Cochrane NJ, Cai F, Huq NL, Burrow MF, Reynolds EC. New Approaches to Enhanced Remineralization of Tooth Enamel. J Dent Res. 2010;89(11):1187-1197.
  • 3. Lynch RJM, Smith SR. Remineralization Agents – New and Effective or Just Marketing Hype? Adv Dent Res. 2012;24(2):63-67.
  • 4. Asokan S, Geethapriya P, Vijayasankari V. Effect of nonfluoridated remineralizing agents on initial enamel carious lesions: A systematic review. Indian J Dent Res. 2019;30(2):282.
  • 5. Horst JA, Tanzer JM, Milgrom PM. Fluorides and Other Preventive Strategies for Tooth Decay. Dent Clin North Am. 2018;62(2):207-234.
  • 6. Sharma D, Singh A, Verma K, Paliwal S, Sharma S, Dwivedi J. Fluoride: A review of pre-clinical and clinical studies. Environ Toxicol Pharmacol. 2017;56:297-313.
  • 7. Van Loveren C. The Antimicrobial Action of Fluoride and its Role in Caries Inhibition. J Dent Res. 1990;69(2_ suppl):676-681.
  • 8. Weyant RJ, Tracy SL, Anselmo TT, et al. Topical fluoride for caries prevention: executive summary of the updated clinical recommendations and supporting systematic review. J Am Dent Assoc. 2013;144(11):1279-1291.
  • 9. Burns J, Hollands K. Nano Silver Fluoride for preventing caries. Evid Based Dent. 2015;16(1):8-9.
  • 10. Horst JA. Silver Fluoride as a Treatment for Dental Caries. Adv Dent Res. 2018;29(1):135-140.
  • 11. Wierichs RJ, Lausch J, Meyer-Lueckel H, Esteves-Oliveira M. Re- and Demineralization Characteristics of Enamel Depending on Baseline Mineral Loss and Lesion Depth in situ. Caries Res. 2016;50(2):141-150.
  • 12. Reema SD, Lahiri PK, Roy S Sen. Review of casein phosphopeptides-amorphous calcium phosphate. Chin J Dent Res. 2014;17(1):7-14.
  • 13. Philip N, Walsh L. The potential ecological effects of casein phosphopeptide-amorphous calcium phosphate in dental caries prevention. Aust Dent J. 2019;64(1):66- 71.
  • 14. Gurunathan D, Somasundaram S, Kumar S. Casein phosphopeptide-amorphous calcium phosphate: a remineralizing agent of enamel. Aust Dent J. 2012;57(4):404- 408.
  • 15. Bijle MNA, Yiu CKY, Ekambaram M. Calcium-Based Caries Preventive Agents: A Meta-evaluation of Systematic Reviews and Meta-analysis. J Evid Based Dent Pract. 2018;18(3):203-217.e4.
  • 16. Hegde S, Shetty D. Non-Fluoridated Remineralization Agents in Dentistry. https://www.researchgate. net/profile/Roma_E_M/publication/308098107_ Non-fluoridated_remineralization_agents_in_dentistry/ links/5a49e032458515f6b058f17b/Non-fluoridated-remineralization- agents-in-dentistry.pdf. Accessed July 3, 2019.
  • 17. Mendes AC, Restrepo M, Bussaneli D, Zuanon AC. Use of Casein Amorphous Calcium Phosphate (CPP-ACP) on White-spot Lesions: Randomised Clinical Trial. Oral Health Prev Dent. 16(1):27-31.
  • 18. Meyer-Lueckel H, Wierichs RJ, Schellwien T, Paris S. Remineralizing Efficacy of a CPP-ACP Cream on Enamel Caries Lesions in situ. Caries Res. 2015;49(1):56-62.
  • 19. Thakkar P, Badakar C, Hugar S, Hallikerimath S, Patel P et al. An in vitro comparison of casein phosphopeptide- amorphous calcium phosphate paste, casein phosphopeptide-amorphous calcium phosphate paste with fluoride and casein phosphopeptide-amorphous calcium phosphate varnish on the inhibition of demineralization an. J Indian Soc Pedod Prev Dent. 2017;35(4):312.
  • 20. Rechmann P, Bekmezian S, Rechmann BMT, Chaffee BW, Featherstone JDB. MI Varnish and MI Paste Plus in a caries prevention and remineralization study: a randomized controlled trial. Clin Oral Investig. 2018;22(6):2229- 2239.
  • 21. Taha AA, Patel MP, Hill RG, Fleming PS. The effect of bioactive glasses on enamel remineralization: A systematic review. J Dent. 2017;67:9-17.
  • 22. Fernando D, Attik N, Pradelle-Plasse N, Jackson P, Grosgogeat B, Colon P. Bioactive glass for dentin remineralization: A systematic review. Mater Sci Eng C. 2017;76:1369-1377.
  • 23. Lizzi F, Villat C, Attik N, Jackson P, Grosgogeat B, Goutaudier C. Mechanical characteristic and biological behaviour of implanted and restorative bioglasses used in medicine and dentistry: A systematic review. Dent Mater. 2017;33(6):702-712.
  • 24. Fernandes HR, Gaddam A, Rebelo A, Brazete D, Stan GE, Ferreira JMF. Bioactive Glasses and Glass-Ceramics for Healthcare Applications in Bone Regeneration and Tissue Engineering. Materials (Basel). 2018;11(12):2530.
  • 25. Xuereb M, Camilleri J, Attard N. Systematic Review of Current Dental Implant Coating Materials and Novel Coating Techniques. Int J Prosthodont. 2015;28(1):51- 59.
  • 26. Patel E, Pradeep P, Kumar P, Choonara YE, Pillay V. Oroactive dental biomaterials and their use in endodontic therapy. J Biomed Mater Res Part B Appl Biomater. April 2019:jbm.b.34379.
  • 27. Bakry AS, Takahashi H, Otsuki M, Tagami J. Evaluation of new treatment for incipient enamel demineralization using 45S5 bioglass. Dent Mater. 2014;30(3):314-320.
  • 28. Milly H, Festy F, Andiappan M, Watson TF, Thompson I, Banerjee A. Surface pre-conditioning with bioactive glass air-abrasion can enhance enamel white spot lesion remineralization. Dent Mater. 2015;31(5):522-533.
  • 29. Mehta AB, Kumari V, Jose R, Izadikhah V. Remineralization potential of bioactive glass and casein phosphopeptide- amorphous calcium phosphate on initial carious lesion: An in-vitro pH-cycling study. J Conserv Dent. 2014;17(1):3-7.
  • 30. Milly H, Festy F, Watson TF, Thompson I, Banerjee A. Enamel white spot lesions can remineralise using bio-active glass and polyacrylic acid-modified bio-active glass powders. J Dent. 2014;42(2):158-166.
  • 31. Palaniswamy UK, Prashar N, Kaushik M, Lakkam SR, Arya S, Pebbeti S. A comparative evaluation of remineralizing ability of bioactive glass and amorphous calcium phosphate casein phosphopeptide on early enamel lesion. Dent Res J (Isfahan). 2016;13(4):297.
  • 32. Narayana SS, Deepa VK, Ahamed S, Sathish ES, Meyappan R, Satheesh Kumar KS. Remineralization efficiency of bioactive glass on artificially induced carious lesion an in-vitro study. J Indian Soc Pedod Prev Dent. 2014;32(1):19-25.
  • 33. Bertassoni LE, Habelitz S, Kinney JH, Marshall SJ, Marshall GW, Jr. Biomechanical perspective on the remineralization of dentin. Caries Res. 2009;43(1):70-77.
  • 34. Fernando D, Attik N, Pradelle-Plasse N, Jackson P, Grosgogeat B, Colon P. Bioactive glass for dentin remineralization: A systematic review. Mater Sci Eng C. 2017;76:1369-1377.
  • 35. Chatzistavrou X, Velamakanni S, DiRenzo K, et al. Designing dental composites with bioactive and bactericidal properties. Mater Sci Eng C. 2015;52:267-272.
  • 36. Osorio E, Fagundes T, Navarro MF, et al. A novel bioactive agent improves adhesion of resin-modified glass-ionomer to dentin. 2015; 29:1543-1552.
  • 37. Tauböck TT, Zehnder M, Schweizer T, Stark WJ, Attin T, Mohn D. Functionalizing a dentin bonding resin to become bioactive. Dent Mater. 2014;30(8):868-875.
  • 38. Wang Z, Jiang T, Sauro S, et al. Dentine remineralization induced by two bioactive glasses developed for air abrasion purposes. J Dent. 2011;39(11):746-756.
  • 39. Wang Z, Shen Y, Haapasalo M, et al. Polycarboxylated microfillers incorporated into light-curable resin- based dental adhesives evoke remineralization at the mineral-depleted dentin. J Biomater Sci Polym Ed. 2014;25(7):679-697.
  • 40. Vollenweider M, Brunner TJ, Knecht S, et al. Remineralization of human dentin using ultrafine bioactive glass particles. Acta Biomater. 2007;3(6):936-943.
  • 41. Ekambaram M, Mohd Said SNB, Yiu CKY. A Review of Enamel Remineralisation Potential of Calcium- and Phosphate- based Remineralisation Systems. Oral Health Prev Dent. 15(5):415-420.
  • 42. Karlinsey RL, Pfarrer AM. Fluoride Plus Functionalized ?-TCP. Adv Dent Res. 2012;24(2):48-52.
  • 43. Takeshita EM, Danelon M, Castro LP, Cunha RF, Delbem ACB. Remineralizing Potential of a Low Fluoride Toothpaste with Sodium Trimetaphosphate: An in situ Study. Caries Res. 2016;50(6):571-578.
  • 44. Danelon M, Pessan JP, Neto FNS, de Camargo ER, Delbem ACB. Effect of toothpaste with nano-sized trimetaphosphate on dental caries: In situ study. J Dent. 2015;43(7):806-813.
  • 45. Manarelli MM, Delbem ACB, Lima TMT, Castilho FCN, Pessan JP. In vitro Remineralizing Effect of Fluoride Varnishes Containing Sodium Trimetaphosphate. Caries Res. 2014;48(4):299-305.
  • 46. Hirata E, Danelon M, Freire IR, Delbem ACB. In Vitro Enamel Remineralization by Low-Fluoride Toothpaste with Calcium Citrate and Sodium Trimetaphosphate. Braz Dent J. 2013;24(3):253-257.
  • 47. Danelon M, Takeshita EM, Peixoto LC, Sassaki KT, Delbem ACB. Effect of fluoride gels supplemented with sodium trimetaphosphate in reducing demineralization. Clin Oral Investig. 2014;18(4):1119-1127.
  • 48. Danelon M, Takeshita EM, Peixoto LC, Sassaki KT, Delbem ACB. Effect of fluoride gels supplemented with sodium trimetaphosphate in reducing demineralization. Clin Oral Investig. 2014;18(4):1119-1127.
  • 49. Carvalho TS, Bönecker M, Altenburger MJ, Buzalaf MAR, Sampaio FC, Lussi A. Fluoride varnishes containing calcium glycerophosphate: fluoride uptake and the effect on in vitro enamel erosion. Clin Oral Investig. 2015;19(6):1429-1436.
  • 50. CARVALHO TS, PETERS BG, RIOS D, et al. Fluoride varnishes with calcium glycerophosphate: fluoride release and effect on in vitro enamel demineralization. Braz Oral Res. 2015;29(1):1-6.
  • 51. Barbosa CS, Montagnolli LG, Kato MT, Sampaio FC, Buzalaf MAR. Calcium glycerophosphate supplemented to soft drinks reduces bovine enamel erosion. J Appl Oral Sci. 20(4):410-413.
  • 52. Zaze ACSF, Dias AP, Amaral JG, Miyasaki ML, Sassaki KT, Delbem ACB. In situ evaluation of low-fluoride toothpastes associated to calcium glycerophosphate on enamel remineralization. J Dent. 2014;42(12):1621-1625.
  • 53. Flamee S, Gizani S, Caroni C, Papagiannoulis L, Twetman S. Effect of a chlorhexidine/thymol and a fluoride varnish on caries development in erupting permanent molars: a comparative study. Eur Arch Paediatr Dent. 2015;16(6):449-454.
  • 54. Naidu S, Tandon S, Nayak R, Ratnanag PV, Prajapati D, Kamath N. Efficacy of Concomitant Therapy with Fluoride and Chlorhexidine Varnish on Remineralization of Incipient Lesions in Young Children. Marwah N, ed. Int J Clin Pediatr Dent. 2016;9(4):296-302.
  • 55. Hebling J, Pashley DH, Tjäderhane L, Tay FR. Chlorhexidine arrests subclinical degradation of dentin hybrid layers in vivo. J Dent Res. 2005;84(8):741-746.
  • 56. De Munck J, Van den Steen PE, Mine A, et al. Inhibition of enzymatic degradation of adhesive-dentin interfaces. J Dent Res. 2009;88(12):1101-1106.
  • 57. Maske TT, Kuper NK, Cenci MS, Huysmans M-CDNJM. Chlorhexidine, a Matrix Metalloproteinase Inhibitor and the Development of Secondary Caries Wall Lesions in a Microcosm Biofilm Model. Caries Res. 2019;53(1):107- 117.
  • 58. Kim D-S, Kim J, Choi K-K, Kim S-Y. The influence of chlorhexidine on the remineralization of demineralized dentine. J Dent. 2011;39(12):855-862.
  • 59. Cicciù M, Fiorillo L, Cervino G. Chitosan Use in Dentistry: A Systematic Review of Recent Clinical Studies. Mar Drugs. 2019;17(7):417.
  • 60. Fujiwara M, Hayashi Y, Ohara N. Inhibitory effect of water-soluble chitosan on growth of Streptococcus mutans. New Microbiol. 2004;27(1):83-86.
  • 61. Arnaud TMS, de Barros Neto B, Diniz FB. Chitosan effect on dental enamel de-remineralization: An in vitro evaluation. J Dent. 2010;38(11):848-852.
  • 62. Xiao Z, Que K, Wang H, et al. Rapid biomimetic remineralization of the demineralized enamel surface using nano- particles of amorphous calcium phosphate guided by chimaeric peptides. Dent Mater. 2017;33(11):1217-1228.
  • 63. Zhang X, Li Y, Sun X, et al. Biomimetic remineralization of demineralized enamel with nano-complexes of phosphorylated chitosan and amorphous calcium phosphate. J Mater Sci Mater Med. 2014;25(12):2619-2628.
  • 64. Ren Q, Ding L, Li Z, et al. Chitosan hydrogel containing amelogenin-derived peptide: Inhibition of cariogenic bacteria and promotion of remineralization of initial caries lesions. Arch Oral Biol. 2019;100:42-48.
  • 65. Soltanimehr E, Bahrampour E, Yousefvand Z. Efficacy of diode and CO2 lasers along with calcium and fluoride- containing compounds for the remineralization of primary teeth. BMC Oral Health. 2019;19(1):121.
  • 66. Poosti M, Ahrari F, Moosavi H, Najjaran H. The effect of fractional CO2 laser irradiation on remineralization of enamel white spot lesions. Lasers Med Sci. 2014;29(4):1349-1355.
  • 67. Berger SB, Cavalli V, Ambrosano GMB, Giannini M. Changes in surface morphology and mineralization level of human enamel following in-office bleaching with 35% hydrogen peroxide and light irradiation. Gen Dent. 58(2):e74-9.
  • 68. Santos DM, Nogueira RD, Lepri CP, Gonçalves LS, Palma-Dibb RG, et al. In vitro assessment of the acid resistance of demineralized enamel irradiated with Er, Cr:YSGG and Nd:YAG lasers. Pediatr Dent. 36(7):137-142.
  • 69. Farhadian N, Rezaei-Soufi L, Jamalian SF, et al. Effect of CPP-ACP paste with and without CO2 laser irradiation on demineralized enamel microhardness and bracket shear bond strength. Dental Press J Orthod. 2017;22(4):53-60.
  • 70. Ahrari F, Mohammadipour H, Hajimomenian L, Fallah- Rastegar A. Evaluation the effect of the diode laser irradiation associated with photoabsorbing cream containing remineralizing agents on microhardness, morphology and the chemical structure of early enamel caries. J Clin Exp Dent. 2018;10(10):e955-e962.
  • 71. Soltanimehr E, Bahrampour E, Yousefvand Z. Efficacy of diode and CO2 lasers along with calcium and fluoride- containing compounds for the remineralization of primary teeth. BMC Oral Health. 2019;19(1):121.
  • 72. Fekrazad R, Najafi A, Mahfar R, Namdari M, Azarsina M. Comparison of enamel remineralization potential after application of titanium tetra fluoride and carbon dioxide laser. LASER Ther. 2017;26(2):113-119.
  • 73. Khamverdi Z, Kordestani M, Panahandeh N, Naderi F, Kasraei S. Influence of CO2 Laser Irradiation and CPPACP Paste Application on Demineralized Enamel Microhardness. J Lasers Med Sci. 2018;9(2):144-148.
  • 74. Gupta G, Mansi B. Ozone therapy in periodontics. J Med Life. 2012;5(1):59-67.
  • 75. Tandan M, Gupta S, Tandan P. Ozone in Conservative Dentistry & Endodontics: A Review. Int J Clin Prev Dent. 2012;8(1):29-35.
  • 76. Almaz ME, Sönmez IŞ. Ozone therapy in the management and prevention of caries. J Formos Med Assoc. 2015;114(1):3-11.
  • 77. Boztaş G, Ömürlü H. Restoratif Diş Hekimliğinde Ozon Tedavileri. Atatürk Üniversitesi Diş Hekim Fakültesi Derg. 2015;9(9).
  • 78. Niu L-N, Zhang W, Pashley DH, et al. Biomimetic remineralization of dentin. Dent Mater. 2014;30(1):77-96.
  • 79. Juntavee N, Juntavee A, Plongniras P. Remineralization potential of nano-hydroxyapatite on enamel and cementum surrounding margin of computer-aided design and computer-aided manufacturing ceramic restoration. Int J Nanomedicine. 2018;13:2755-2765.
  • 80. Nozari A, Ajami S, Rafiei A, Niazi E. Impact of Nano Hydroxyapatite, Nano Silver Fluoride and Sodium Fluoride Varnish on Primary Teeth Enamel Remineralization: An In Vitro Study. J Clin Diagn Res. 2017;11(9):ZC97-ZC100.
  • 81. Huang S, Gao S, Cheng L, Yu H. Remineralization Potential of Nano-Hydroxyapatite on Initial Enamel Lesions: An in vitro Study. Caries Res. 2011;45(5):460-468.
  • 82. Ruan Q, Moradian-Oldak J. Amelogenin and enamel biomimetics. J Mater Chem B. 2015;3(16):3112-3129.
  • 83. Fan Y, Sun Z, Moradian-Oldak J. Controlled remineralization of enamel in the presence of amelogenin and fluoride. Biomaterials. 2009;30(4):478-483.
  • 84. Hossein BG, Sadr A, Espigares J, et al. Study on the influence of leucine-rich amelogenin peptide (LRAP) on the remineralization of enamel defects via micro-focus x-ray computed tomography and nanoindentation.
  • 85. Kwak SY, Litman A, Margolis HC, Yamakoshi Y, Simmer JP. Biomimetic Enamel Regeneration Mediated by Leucine-Rich Amelogenin Peptide. J Dent Res. 2017;96(5):524-530.
  • 86. Chen J, Cao X, Guo R, et al. A highly effective polymerase chain reaction enhancer based on dendrimer-entrapped gold nanoparticles. Analyst. 2012;137(1):223- 228.
  • 87. Chen L, Yuan H, Tang B, Liang K, Li J. Biomimetic Remineralization of Human Enamel in the Presence of Polyamidoamine Dendrimers in vitro. Caries Res. 2015;49(3):282-290.
  • 88. Hsu CC, Chung HY, Yang J-M, Shi W, Wu B. Influence of 8DSS Peptide on Nano-mechanical Behavior of Human Enamel. J Dent Res. 2011;90(1):88-92.
  • 89. Sun M, Wu N, Chen H. Laser-assisted Rapid Mineralization of Human Tooth Enamel. Sci Rep. 2017;7(1):9611.
  • 90. Yarbrough DK, Hagerman E, Eckert R, et al. Specific Binding and Mineralization of Calcified Surfaces by Small Peptides. Calcif Tissue Int. 2010;86(1):58-66.
  • 91. Chen M, Yang J, Li J, et al. Modulated regeneration of acid-etched human tooth enamel by a functionalized dendrimer that is an analog of amelogenin. Acta Biomater. 2014;10(10):4437-4446. 6
  • 92. Alkilzy M, Santamaria RM, Schmoeckel J, Splieth CH. Treatment of Carious Lesions Using Self-Assembling Peptides. Adv Dent Res. 2018;29(1):42-47.
  • 93. Kind L, Stevanovic S, Wuttig S, et al. Biomimetic Remineralization of Carious Lesions by Self-Assembling Peptide. J Dent Res. 2017;96(7):790-797.
  • 94. Takahashi F, Kurokawa H, Shibasaki S, Kawamoto R, Murayama R, Miyazaki M. Ultrasonic assessment of the effects of self-assembling peptide scaffolds on preventing enamel demineralization. Acta Odontol Scand. 2016;74(2):142-147.
  • 95. Schlee M, Schad T, Koch JH, Cattin PC, Rathe F. Clinical performance of self-assembling peptide P 11 -4 in the treatment of initial proximal carious lesions: A practice-based case series. J Investig Clin Dent. 2018;9(1):e12286.
  • 96. Pitts NB, Wright JP. Reminova and EAER: Keeping Enamel Whole through Caries Remineralization. Adv Dent Res. 2018;29(1):48-54.
  • 97. Wijeyeweera RL, Kleinberg I. Arginolytic and ureolytic activities of pure cultures of human oral bacteria and their effects on the pH response of salivary sediment and dental plaque in vitro. Arch Oral Biol. 1989;34(1):43-53.
  • 98. Ástvaldsdóttir Á, Naimi-Akbar A, Davidson T, et al. Arginine and Caries Prevention: A Systematic Review. Caries Res. 2016;50(4):383-393.
  • 99. Schweizer HP. Triclosan: a widely used biocide and its link to antibiotics. FEMS Microbiol Lett. 2001;202(1):1- 7.
  • 100. Riley P, Lamont T. Triclosan/copolymer containing toothpastes for oral health. In: Riley P, ed. Cochrane Database of Systematic Reviews. Chichester, UK: John Wiley & Sons, Ltd; 2013:CD010514.
  • 101. Silva MFDA, Giniger MS, Zhang YP, Devızıo W. The effect of a triclosan/copolymer/fluoride liquid dentifrice on interproximal enamel remineralization and fluoride uptake. J Am Dent Assoc. 2004;135(7):1023-1029.
  • 102. Zhou Y, Yang J, Lin Z, et al. Triclosan-loaded poly(amido amine) dendrimer for simultaneous treatment and remineralization of human dentine. Colloids Surfaces B Biointerfaces. 2014;115:237-243.
  • 103. Bahador A, Lesan S, Kashi N. Effect of xylitol on cariogenic and beneficial oral streptococci: a randomized, double-blind crossover trial. Iran J Microbiol. 2012;4(2):75-81.
  • 104. Cardoso JG, Iorio NLP, Rodrigues LF, et al. Influence of a Brazilian wild green propolis on the enamel mineral loss and Streptococcus mutans’ count in dental biofilm. Arch Oral Biol. 2016;65:77-81.
  • 105. Birkhed D, Edwardsson S, Ahldén ML, Frostell G. Effects of 3 months frequent consumption of hydrogenated starch hydrolysate (Lycasin), maltitol, sorbitol and xylitol on human dental plaque. Acta Odontol Scand. 1979;37(2):103-115.
  • 106. Mäkinen KK, Isotupa KP, Kivilompolo T, Mäkinen PL, Toivanen J, Söderling E. Comparison of Erythritol and Xylitol Saliva Stimulants in the Control of Dental Plaque and Mutans Streptococci. Caries Res. 2001;35(2):129-135.
  • 107. Lenkkeri a-mh, pienihakkinen k, hurmr s, alanen p. The caries-preventive effect of xylitol/maltitol and erythritol/ maltitol lozenges: results of a double-blinded, cluster- randomized clinical trial in an area of natural fluoridation. Int J Paediatr Dent. 2012;22(3):180-190.
  • 108. Honkala S, Runnel R, Saag M, et al. Effect of erythritol and xylitol on dental caries prevention in children. Caries Res. 2014;48(5):482-490.
  • 109. Cova I, Leta V, Mariani C, Pantoni L, Pomati S. Exploring cocoa properties: is theobromine a cognitive modulator? Psychopharmacology (Berl). 2019;236(2):561-572.
  • 110. Amaechi BT, Porteous N, Ramalingam K, Mensinkai PK, Cchahuana Vasquez RA, et al. Remineralization of Artificial Enamel Lesions by Theobromine. Caries Res. 2013;47(5):399-405.
  • 111. Kargul B, Özcan M, Peker S, Nakamoto T, Simmons WB FA. Evaluation of human enamel surfaces treated with theobromine: a pilot study. - PubMed - NCBI. Oral Heal Prev Dent. 2012:10(3):275-282.
  • 112. Lippert F. The effects of fluoride, strontium, theobromine and their combinations on caries lesion rehardening and fluoridation. Arch Oral Biol. 2017;80:217-221.
  • 113. Islam SM, Hiraishi N, Nassar M, Sono R, Otsuki M, et al. In vitro effect of hesperidin on root dentin collagen and de/re-mineralization. Dent Mater J. 2012;31(3):362-367.
  • 114. Hiraishi N, Sono R, Islam MS, Otsuki M, Tagami J, et al. Effect of hesperidin in vitro on root dentine collagen and demineralization. J Dent. 2011;39(5):391-396.
  • 115. Van Strijp AJP, Takatsuka T, Sono R, Iijima Y. Inhibition of dentine collagen degradation by hesperidin: an in situ study. Eur J Oral Sci. 2015;123(6):447-452.
  • 116. Jawale KD, Kamat SB, Patil JA, Nanjannawar GS, Chopade RV. Grape seed extract: An innovation in remineralization. J Conserv Dent. 2017;20(6):415-418.
  • 117. Xie Q, Bedran-Russo AK, Wu CD. In vitro remineralization effects of grape seed extract on artificial root caries. J Dent. 2008;36(11):900-906.
  • 118. Prabhakar AR, Sharma D, Sugandhan S. Comparative evaluation of the remineralising effects and surface microhardness of glass ionomer cement containing grape seed extract and casein phosphopeptide -amorphous calcium phosphate: an in vitro study. Eur Arch Paediatr Dent. 2012;13(3):138-143.
  • 119. Nagi S, Hassan S, Abd El-Alim S, Elmissiry M. Remineralization potential of grape seed extract hydrogels on bleached enamel compared to fluoride gel: An in vitro study. J Clin Exp Dent. 2019:e401-e407.
  • 120. Zhang T, Chu J, Zhou X. Anti-carious Effects of Galla chinensis: A Systematic Review. Phyther Res. 2015;29(12):1837-1842.
  • 121. Tang B, Yuan H, Cheng L, Zhou X, Huang X, Li J. Effects of gallic acid on the morphology and growth of hydroxyapatite crystals. Arch Oral Biol. 2015;60(1):167-173.
  • 122. Zhang TT, Guo HJ, Liu XJ, Chu JP, Zhou XD. Galla chinensis Compounds Remineralize Enamel Caries Lesions in a Rat Model. Caries Res. 2016;50(2):159-165.
  • 123. Abbasi AJ, Mohammadi F, Bayat M, Gema SM, Ghadirian H, et al. Applications of propolis in Dentistry: A review. Ethiop J Heal Sci. 2018;28(4):509.
  • 124. Dziedzic A, Kubina R, Wojtyczka RD, Kabała-Dzik A, Tanasiewicz M, Morawiec T. The antibacterial effect of ethanol extract of polish propolis on mutans streptococci and lactobacilli isolated from saliva. Evid Based Complement Alternat Med. 2013; Article ID:681891.
  • 125. Duailibe SA de C, Gonçalves AG, Ahid FJM. Effect of a propolis extract on Streptococcus mutans counts in vivo. J Appl Oral Sci. 2007;15(5):420-423.
  • 126. Koo H, Rosalen PL, Cury JA, Park YK, Bowen WH. Effects of compounds found in propolis on Streptococcus mutans growth and on glucosyltransferase activity. Antimicrob Agents Chemother. 2002;46(5):1302-1309.
  • 127. Cardoso JG, Iorio NLP, Rodrigues LF, Couri MLB, Farah A, et al. Influence of a Brazilian wild green propolis on the enamel mineral loss and Streptococcus mutans’ count in dental biofilm. Arch Oral Biol. 2016;65:77-81.
  • 128. Martins ML, Leite KL de F, Pacheco-Filho EF, Pereira AFM, Romanos MTV, et al. Efficacy of red propolis hydro-alcoholic extract in controlling Streptococcus mutans biofilm build-up and dental enamel demineralization. Arch Oral Biol. 2018;93:56-65.
7tepe Klinik-Cover
  • ISSN: 2458-9586
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2005
  • Yayıncı: Yeditepe Üniversitesi Rektörlüğü
Sayıdaki Diğer Makaleler

Düşük doz lazer tedavisinin sagittal split ramus osteotomisi sonrası meydana gelen duyu değişiklikleri üzerine etkisi

Nur ALTIPARMAK, Seçil ÇUBUK, Tolga KENCER, Burak BAYRAM

İmplant destekli hareketli protezlerde kullanılan iki farklı tutucu tipinin hastaların memnuniyetleri üzerine etkilerinin karşılaştırılması

Sercan KÜÇÜKKURT, Çağlayan ÖZTÜRK

RGB-D derinlik kamerasının farklı görüntüleme mesafelerinde veri doğruluğunun incelenmesi

TAMER ÇELAKIL

Periodontoloji kliniklerine başvuran hastaların periodontal sağlık durumlarının ve sigara kullanımlarının değerlendirilmesi: Retrospektif kesitsel bir çalışma (Bölüm I).

Ogül Leman TUNAR, Hazel Zeynep KOCABAŞ, Gizem İNCE KUKA, Ebru ÖZKAN KARACA, Berkay ÖZATA, Hare GÜRSOY, Bahar KURU

Markası bilinmeyen dental implantların protetik rehabilitasyonu: Olgu sunumu

Betül HAMİTOĞLU, Zeynep ÖZKURT KAYAHAN

Promax artefakt azaltma algoritmasının titanyum ve zirkonyum implantların oluşturduğu artefaktlar üzerine etkisi

Cansu BÜYÜK, BELDE ARSAN, Tamer Lütfi ERDEM, Özgür ERDOĞAN

Ortodontide ürün tasarımına sistematik yaklaşım: Çoklu-durum analizi ile tasarım odaklı düşünme yönteminin kullanımı

Muhsin ÇİFTER

Comparison of the effects of two different types of retainers used in implant-supported overdenture prosthesis on patient satisfaction

Sercan KÜÇÜKKURT, Çağlayan ÖZTÜRK

Titanyum yüzeyine fiber lazer uygulamasının rezin simanın bağlanma dayanımı üzerine etkisi

Ayşe ERZİNCANLI, Betül HAMİTOĞLU, Zeynep ÖZKURT KAYAHAN

Peri-implant mukozitisin tedavisinde mekanik yaklaşıma ilave klorheksidin irrigasyonunun klinik etkinliği: Pilot çalışma

Volkan EREN, Hatice Selin YILDIRIM, Bahar KURU, Leyla KURU