Konvansiyonel radyografiden dijitale: İntraoral fosfor plak sistemlerinde karşılaşılan artifakt ve hatalar

Radyografiler, diş hekimliği alanında dentoalveolar ve maksillofasiyal bölgeye ait patoloji ya da hastalıkların tanısında yaygın olarak kullanılmaktadır. Gelişen teknoloji ile birlikte dental görüntüleme pratiğinde dijital radyografi konvansiyonel radyoloji ile karşılaştırıldığında sağ-ladığı avantajlar nedeni ile diş hekimleri arasında giderek tercih edilen bir yöntem olmaya başlamıştır. Charged-Coupled-Device, Complementary Metal Oxide Semiconducter ve fosfor plaklar dijital radyolojide kullanılan sensörlerdir. Fosfor plak sistemleri; konvansiyonel filme olan benzerlikleri, kablosuz olmaları, mevcut film tutucular ile uyumlu olmaları ve diğer dijital sensörlere kıyasla daha ekonomik olmaları nedeniyle daha çok tercih edilen sensörlerdir. Ancak tüm sistemlerde olduğu gibi fosfor plak sistemlerinde de bazı hata ve sorunlar ile karşılaşılmaktadır. Bu çalışmanın amacı konvansiyonel ve fosfor plak sistemlerinde tespit edilen görüntü hataları tanımlamak, oluşum sebeplerine göre hataların nedenlerini ve çözümlerini değerlendirmektir.

Conventional radiography to digital: artifacts and errors encountered in intraoral phosphorus plate systems

Radiographs are widely used in the diagnosis of pathologies or diseases related to dentoalveo-lar and maxillofacial region in dentistry field. With advancing technology, digital radiography in dental imaging practice has become an increasingly preferred method among dentists due to its advantages compared with conventional radiology. Charged-Coupled-Device, Comple-mentary Metal Oxide Semiconductor and phosphor storage plates are the sensors used in digi-tal radiology. The phosphor storage plates are cordless and similar with conventional films, compatible with existing intraoral film holders, and are more economical than other digital sensors. Therefore, phosphor storage plates are more preferred sensors among all sensors. However, as in all systems, some errors and problems are encountered in phosphor plate systems. The aim of the study was to identify the artifacts detected in conventional and phosphor plaque systems, to evaluate the causes and solutions of the faults according to the occurrence reasons.

Kaynakça

1. White SC, Pharoah MJ. Oral Radiology Principles and Interpretation. 5 ed. St. Louis (MO); Mosby: 2004. p. 225- 44.

2. Soğur E, Baskı BG. İntraoral görüntüleme sistemleri. Atatürk Üniv Diş Hek Fak Derg 2011; 21: 249-254.

3. Van der Stelt PF. Filmless imaging: the uses of digital radiography in dental practice. J Am Dent Assoc 2005; 136: 1379-1387.

4. Berkhout WER, Verheij JGC, Syriopoulos K, Li G, Sanderink GCH, Van Der Stelt PF. Detection of proximal caries with high-resolution and standard resolution digital radiographic systems. Dentomaxillofac Radiol 2007; 36: 204-210.

5. Richards AG, Colquitt WN. Reduction in dental x-ray exposures during the past 60 years. J Am Dent Assoc 1981; 103: 713-718.

6. Farman AG, Farman TT. A comparison of 18 different x-ray detectors currently used in dentistry. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2005; 99: 485-489.

7. Vandenberghe B, Jacobs R, Bosmans H. Modern dental imaging: a review of the current technology and clinical applications in dental practice. Eur Radiol. 2010; 20: 2637-2655.

8. Wakoh M, Kuroyanagi K. Digital imaging modalities for dental practice. Bull Tokyo Dent Coll 2001; 42: 1-14.

9. Malleshi SN, Mahima VG, Raina A, Patil K. A subjective assessment of perceived clarity of indirect digital images and processed digital images with conventional intra-oral periapical radiographs. J Clin Diagn Res 2013; 7: 1793-1796.

10. Wenzel A, Møystad A. Work flow with digital intraoral radiography: A systematic review. Acta Odontol Scand 2010; 68: 106-114.

11. Van der Stelt PF. Better imaging: The advantages of digital radiography. J Am Dent Assoc 2008; 139 Suppl: 7S-13.

12. Berkhut WE, Sanderink GC, Van der Stelt PF. A comparison of digital and film radiography in Dutch dental practices assessed by questionnaire. Dentomaxillofac Radiol 2002; 31: 93-99.

13. Chiu HL, Lin SH, Chen CH, Wang WC, Chen JY, Chen YK, et al. Analysis of photostimulable phosphor plate image artifacts in an oral and maxillofacial radiology department. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008; 106: 749-756.

14. Borg E. Some characteristics of solid-state and photo-stimulable phosphor detectors for intra-oral radiography. Swed Dent J 1999; 139(Suppl): 1-67.

15. Hildebolt CF, Couture RA, Whiting BR. Dental photostimulable phosphor radiography. Dent Clin North Am 2000; 44: 273-297.

16. Wenzel A, Frandsen E, Hintze H. Patient discomfort and crossinfection control in bite-wing examinations with a storage phosphor plate and a CCD-based sensor. J Dent 1999; 27: 243-246.

17. Roberts MW, Mol A. Clinical techniques to reduce sensor plate damage in PSP digital radiography. J Dent Child (Chic) 2004; 71: 169-170.

18. Akçiçek G, Çağırankaya LB, Avcu N. Fosfor Plak Sistemlerinde Karşılaşılan Temel Sorunlar. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 2016.

19. Wenzel A. A review of dentists’ use of digital radiography and caries diagnosis with digital systems. Dentomaxillofac Radiol 2006; 35: 307-314.

20. Brennan J. An introduction to digital radiography in dentistry. J Orthod 2002; 29: 66-69.

21. Stamatakis HC, Welander U, McDavid WD. Physical properties of a photostimulable phosphor system for intra-oral radiography. Dentomaxillofac Radiol 2000; 29: 28-34.

22. Borg E, Attaelmanan A, Gröndahl HG. Image plate systems differ in physical performance. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2000; 89: 118-124.

23. Petrikowski CG. Introducing digital radiography in the dental office: An overview. J Can Dent Assoc 2005; 71: 651.

24. Ramamurthy R, Canning CF, Scheetz JP, Farman AG. Impact of ambient lighting intensity and duration on the signal-to-noise ratio of images from photostimulable phosphor plates processed using DenOptix and ScanX systems. Dentomaxillofac Radiol 2004; 33: 307-311.

25. Akdeniz BG, Gröndahl HG, Kose T. Effect of delayed scanning of storage phosphor plates. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2005; 99: 603-607.

26. Martins MG, Neto FH, Whaites EJ. Analysis of digital images acquired using different phosphor storage plates (PSPs) subjected to varying reading times and storage conditions. Dentomaxillofac Radiol 2003; 32: 186-190.

27. Ang DB, Angelopoulos C, Katz JO. How does signal fade on photo-stimulable storage phosphor imaging plates when scanned with a delay and what is the effect on image quality? Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006; 102: 673-679.

28. Kalathingal SM, Shrout MK, Comer C, Brady C. Rating the extent of surface scratches on photostimulable storage phosphor plates in a dental school environment. Dentomaxillofac Radiol 2010; 39: 179-183.

29. Çalışkan A, Sumer, AP. Definition, classification and retrospective analysis of photostimulable phosphor image artefacts and errors in intraoral dental radiography. Dentomaxillofac Radiol 2017; 46: 20160188.

30. Gulsahi A, Secgin CK. Assessment of intraoral image artifacts related to photostimulable phosphor plates in a dentomaxillofacial radiology department. Niger J Clin Pract 2016; 19: 248-53.

31. Deniz Y, Kaya S. Determination and classification of intraoral phosphor storage plate artifacts and errors. Imaging science in dentistry, 2019; 49: 219-228.

32. Hubar J.S, Caballero P. Fundamentals of Oral and Maxillofacial Radiology. Wiley; 2017.

33. Ghom AG. Textbook of Oral Radiology-E-Book. Elsevier Health Sciences; 2017.

34. White SC, Pharoah MJ. Oral Radiology Principles and Interpretation. 7th ed. St. Louis: Mosby; 2014; p. 46,94.

35. Langlais R. Exercises in Oral Radiology and Interpretation 4th Edition, Saunders; 2004.

36. Dixon J, Biggi M, Weller R. Common artefacts and pitfalls in equine computed and digital radiography and how to avoid them. Equine Veterinary Education; 2016.

37. Nuth EK, Armbrust LJ, Roush JK, Biller DS. Identification and effects of common errors and artifacts on the perceived quality of radiographs. J. Am. Vet. Med. Assoc. 2014; 244:961-967.

38. Shetty CM, Barthur A, Kambadakone A, Narayanan N, Kv R. Computed radiography image artifacts revisited. American Journal of Roentgenology 2011; 196: W37-W47.

39. Harorlı A, Akgül HM, Dağıstan S. Dişhekimliği Radyolojisi. 1.baskı. Erzurum: Eser Ofset Matbaacılık; 2006.

40. Seibert JA, Bogucki TM, Ciona T, Huda W, Karellas A, Mercier JR, et al. Acceptance testing and quality control of photostimulable storage phosphor imaging systems. Report of AAPM task group 10. College Park, MD: American Association of Physicists in Medicine; 2006.

41. Denoptix® Digital Imaging System – User Manual and Installation Guide, Dentsply Gendex, Des Plaines, IL, USA.

42. A/T Scan X™ Digital Imaging System Operator's Manual Air Techniques Inc.P-9. www.airtechniques.com.

43. Dürr digital diagnostic radiography. The time is right for a change in diagnostic radiography [Product brochure on the internet]. Bietigheim-Bissingen: Dürr Dental GmbH & Co. KG.

44. Ludlow JB, Mol A. Digital imaging. In: White SC, Pharoah MJ, eds. Oral radiology: principles and interpretation. 7th edn. St Louis, MO: Mosby; 2014. pp. 41-62.

45. Farman AG, Farman TT, Molteni R. Effects of visible light on storage phosphors used in dentistry. In: Lemke HU, et al (eds). Computer assisted radiology and surgery. Amsterdam: Elsevier Science, 1999; p. 1085.

46. Molteni R. Effect of visible light on photostimulated-phosphor imaging plates. International Congress Series 2003; 1256: 1199-205.

47. Eskandarloo A, Yousefi A, Soheili S, Ghazikhanloo K, Amini P, Mohammadpoor H. Evaluation of the Effect of Light and Scanning Time Delay on The Image Quality of Intra Oral Photostimulable Phosphor Plates. The open dentistry journal, 2017; 11: 690.

48. Ergun S, Guneri P, Ilguy D, Ilguy M, Boyacıoğlu H. How many times can we use a phosphor plate? A priminary study. Dentomaxillofac Radiol 2009; 38: 42-47.

49. Bedard A, Davis TD, Angelopoulos C. Storage phosphor plates: how durable are they as a digital dental radiographic system? J Contemp Dent Pract 2004; 5: 57- 69.

50. Buchanan A, Benton B, Carraway A, Looney S, Kalathingal S. Perception versus reality—findings from a phosphor plate quality assurance study. Oral surgery, oral medicine, oral pathology and oral radiology, 2017; 123: 496-501.

51. Kavo.com [Internet]. Biberach: SOREDEXTM DIGORATM Optime; c2019 [cited 2019 Jan 7]. Available from: https:// www.kavo.com/dental-x-ray-machines-and-diagnostics/ scan-exam-intraoral#docs.

52. Duerrdental.com [Internet]. Bietigheim-Bissingen: VistaScan Mini Easy. Available from: https://www.duerrdental.com/ en/products/imaging/vistascan-image-plate-scanner/vistascan- mini-easy/.

53. Webber RL, Ruttimann UE, Groenhuis RA. Computer correction of projective distortions in dental radiographs. J Dent Res 1984; 63: 1032-1036.

54. Product information VistaScan image plate cleaning wipe [Product brochure on the internet]. Bietigheim-Bissingen: Dürr Dental AG.

55. Seeram E. Computed radiography: physics and technology. In: Digital radiography. Singapore: Springer; 2019; p. 41-63.

56. Willis C, Thompson SK, Shepard J. Artifacts and misadventures in digital radiography. Appl Radiol 2004; January 1: 11-20.

Kaynak Göster