Kompozit materyallerin gingival fibroblast hücrelerindeki oksidan ve antioksidan değerlerine etkisinin incelenmesi

Amaç: Oral dokular ile dental restorasyonlar arasındaki direkt etkileşimler serbest radikallerin hücrede birikmesi ile oksidatif strese ve hücresel hasara neden olmaktadır. Oksidatif strese dayalı ölçüm yöntemleri bir materyalin biyouyumluluğun belirlenmesinde önemli bir yer edinmektedir. Bu çalışmada farklı kompozit materyallerin gingival fibroblast hücrelerinde meydana getirdiği oksidatif stresin TAS (total antioksidan kapasite) ve TOS (total oksidan kapasite) analizleriyle değerlendirilmesi amaçlandı. Gereç ve Yöntem: Çalışmada 6 yeni nesil kompozit materyal kullanıldı. (X-tra Fill (Voco-Almanya), G- ænial Posterior (GC Tokyo Japonya), Estelite Sigma Quick (Tokuyama-Japonya), Grandio (Voco-Almanya), Arabesk (Voco-Almanya) Polofil Supra (Voco-Almanya) Her materyal için örnek sayısı 12 olarak belirlendi (n=12). Örnekler teflon kalıplar kullanılarak hazırlandı. GFBCs’lerin 72 saat süreyle örneklerle teması sonucu hücrelerde meydana gelen oksidatif stres durumu TAS ve TOS analizleriyle değerlendirildi. Bulgular: Gruplardan elde edilen TAS değerleri sırasıyla; PS>AB>GO>ES>XF>GA olarak; TOS değerleri GA>XF>ES>- GO>AB>PS olarak tespit edildi. Sonuç: Bir materyalin sitotoksisitesinde; materyalin yapısı, içerdiği monomer oranı, monomer tipi, doldurucu içeriği gibi faktörlerin bir bütün olarak etkili olduğu, monomer yüzdele 9rindeki artışın antioksidan sistem üzerine doğrudan etki ettiği, doldurucu içeriğine eklenen parçacıkların da oksidatif streste etkili olduğu sonucuna varıldı.

Investigation of the effect of composıte materıals on oxidant and antioxidant values ın the gingival fibroblast cells

Aim: Direct interactions between oral tissues and dental restorations cause oxidative stress and cellular damage by accumulation of free radicals in the cell. Oxidative stress-based measurement methods have an important role in determining biocompatibility of a material. In this study, it was aimed to evaluate the oxidative stress caused by different composite materials in gingival fibroblast cells by TAS (total antioxidant capacity) and TOS (total oxidant capacity) analysis. Materials and Methods: Six different composite materials were used in the study. (X-tra Fill (Voco-Germany), G- ænial Posterior (GC Tokyo Japan), Estelite Sigma Quick (Tokuyama-Japan), Grandio (Voco-Germany), Arabesque (Voco-Germany) Polofil Supra (Voco-Germany) The number of samples for each material was determined as 12 (n = 12). Samples were prepared by using Teflon molds, and oxidative stress status of the cells were evaluated by TAS-TOS (total antioxidant-total oxidant status) analysis as a result of contact of the GFBCs with the samples for 72 hours. Results: TAS values obtained from the groups are as follows; PS> EU> GO> ES> XF> GA; TOS values were determined as GA> XF> ES> GO> AB> PS. Conclusion: In the cytotoxicity of a material; It was concluded that factors such as the structure of the material, the ratio of the monomer it contains, the type of monomer, the filler content are effective as a whole, the increase in the monomer percentages directly affects the antioxidant system, and the particles added to the filler content are also effective in the oxidative stress.

___

  • 1. Hanks CT, Wataha JC, Sun Z. In vitro models of biocompatibility: a review. Dent Mater 1996; 12: 186-193.
  • 2. Schmalz G. The biocompatibility of non-amalgam dental filling materials. Eur J Oral Sci 1998; 106: 696-706.
  • 3. Cramer NB, Stansbury JW, Bowman CN. Recent advances and developments in composite dental restorative materials. J Dent Res 2011; 90: 402-416.
  • 4. Peutzfeldt A. Resin composites in dentistry: the monomer systems. Eur J Oral Sci 1997; 105: 97-116.
  • 5. Van Landuyt KL, Snauwaert J, De Munck J, Peumans M, Yoshida Y, Poitevin A, Coutinho E, Suzuki K, Lambrechts P, Van Meerbeek B. Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials 2007; 28: 3757-3785.
  • 6. St John KR. Biocompatibility of dental materials. Dent Clin North Am 2007; 51: 747-760.
  • 7. Krifka S, Spagnuolo G, Schmalz G, Schweikl H. A review of adaptive mechanisms in cell responses towards oxidative stress caused by dental resin monomers. Biomaterials 2013; 34: 4555-4563.
  • 8. Schweikl H, Spagnuolo G, Schmalz G. Genetic and cellular toxicology of dental resin monomers. J Dent Res 2006; 85: 870-877.
  • 9. Spagnuolo G, Annunziata M, Rengo S. Cytotoxicity and oxidative stress caused by dental adhesive systems cured with halogen and LED lights. Clin Oral Investig 2004; 8: 81-85.
  • 10. Lee DH, Lim BS, Lee YK, Ahn SJ, Yang HC. Involvement of oxidative stress in mutagenicity and apoptosis caused by dental resin monomers in cell cultures. Dent Mater 2006; 22: 1086-1092.
  • 11. Mates JM, Sanchez-Jimenez FM. Role of reactive oxygen species in apoptosis: implications for cancer therapy. Int J Biochem Cell Biol 2000; 32: 157-170.
  • 12. Demirci T GT, Şengül F. . Dental Rezin Kompozitlerin Sitotoksisitesi: Bir in Vitro Çalışma. Atatürk Üniv Diş Hek Fak Derg 2014; 24: 10-15.
  • 13. Peumans M, Van Meerbeek B, Lambrechts P, Vanherle G, Quirynen M. The influence of direct composite additions for the correction of tooth form and/or position on periodontal health. A retrospective study. J Periodontol 1998; 69: 422-427.
  • 14. AA KS. Dental döküm alaşımlarının genotoksisite, mutajenitisite ve karsinojenitesini. SÜ Diş Hek Fak Derg 1994; 16: 73-78.
  • 15. Gutteridge JM, Quinlan GJ, Mumby S, Heath A, Evans TW. Primary plasma antioxidants in adult respiratory distress syndrome patients: changes in iron-oxidizing, iron-binding, and free radical-scavenging proteins. J Lab Clin Med 1994; 124: 263-273.
  • 16. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem 1996; 239: 70-76.
  • 17. Mercan U. Toksikolojide serbest radikallerin önemi. Yüzüncü Yıl Üniv Vet Fak Derg 2004; 15: 91-96.
  • 18. Geurtsen W. Biocompatibility of resin-modified filling materials. Crit Rev Oral Biol Med 2000; 11: 333-355.
  • 19. Ferracane JL, Condon JR. Rate of elution of leachable components from composite. Dent Mater 1990; 6: 282- 287.
  • 20. Trichaiyapon V, Torrungruang K, Panitvisai P. Cytotoxicity of flowable resin composite on cultured human periodontal ligament cells compared with mineral trioxide aggregate. J Investig Clin Dent 2012; 3: 215-220.
  • 21. Goldberg M. In vitro and in vivo studies on the toxicity of dental resin components: a review. Clin Oral Investig 2008; 12: 1-8.
  • 22. Stanislawski L, Lefeuvre M, Bourd K, Soheili-Majd E, Goldberg M, Perianin A. TEGDMA-induced toxicity in human fibroblasts is associated with early and drastic glutathione depletion with subsequent production of oxygen reactive species. J Biomed Mater Res A 2003; 66: 476- 482.
  • 23. Chang HH, Guo MK, Kasten FH, Chang MC, Huang GF, Wang YL, Wang RS, Jeng JH. Stimulation of glutathione depletion, ROS production and cell cycle arrest of dental pulp cells and gingival epithelial cells by HEMA. Biomaterials 2005; 26: 745-753.
  • 24. Spagnuolo G, Mauro C, Leonardi A, Santillo M, Paterno R, Schweikl H, Avvedimento EV, Rengo S. NF-kappaB protection against apoptosis induced by HEMA. J Dent Res 2004; 83: 837-842.
  • 25. Engelmann J, Leyhausen G, Leibfritz D, Geurtsen W. Effect of TEGDMA on the intracellular glutathione concentration of human gingival fibroblasts. J Biomed Mater Res 2002; 63: 746-751.
  • 26. Volk J, Engelmann J, Leyhausen G, Geurtsen W. Effects of three resin monomers on the cellular glutathione concentration of cultured human gingival fibroblasts. Dent Mater 2006; 22: 499-505.
  • 27. Engelmann J, Janke V, Volk J, Leyhausen G, von Neuhoff N, Schlegelberger B, Geurtsen W. Effects of BisGMA on glutathione metabolism and apoptosis in human gingival fibroblasts in vitro. Biomaterials 2004; 25: 4573- 4580.
  • 28. Lygre H, Høl PJ, Solheim E, Moe G. Organic leachables from polymer‐based dental filling materials. European journal of oral sciences 1999; 107: 378-383.
  • 29. Munksgaard EC, Peutzfeldt A, Asmussen E. Elution of TEGDMA and BisGMA from a resin and a resin composite cured with halogen or plasma light. Eur J Oral Sci 2000; 108: 341-345.
  • 30. Ortengren U, Wellendorf H, Karlsson S, Ruyter IE. Water sorption and solubility of dental composites and identification of monomers released in an aqueous environment. J Oral Rehabil 2001; 28: 1106-1115.
  • 31. Tanaka K, Taira M, Shintani H, Wakasa K, Yamaki M. Residual monomers (TEGDMA and Bis GMA) of a set visible‐light‐cured dental composite resin when immersed in water. J Oral Rehab 1991; 18: 353-362.
  • 32. Moharamzadeh K, Van Noort R, Brook IM, Scutt AM. Cytotoxicity of resin monomers on human gingival fibroblasts and HaCaT keratinocytes. Dent Mater 2007; 23: 40- 44.
  • 33. Dillingham EO, Lawrence WH, Autian J, Schmalz G. Acrylate and methacrylate esters: relationship of hemolytic activity and in vivo toxicity. J Biomed Mater Res 1983; 17: 945-957.
  • 34. Geurtsen W, Leyhausen G. Chemical-Biological Interactions of the resin monomer triethyleneglycol-dimethacrylate (TEGDMA). J Dent Res 2001; 80: 2046-2050.
  • 35. Spahl W, Budzikiewicz H, Geurtsen W. Determination of leachable components from four commercial dental composites by gas and liquid chromatography/mass spectrometry. J Dent 1998; 26: 137-145.
  • 36. Michelsen VB, Lygre H, Skalevik R, Tveit AB, Solheim E. Identification of organic eluates from four polymer-based dental filling materials. Eur J Oral Sci 2003; 111: 263- 271.
  • 37. Noda M, Wataha JC, Kaga M, Lockwood PE, Volkmann KR, Sano H. Components of dentinal adhesives modulate heat shock protein 72 expression in heat-stressed THP-1 human monocytes at sublethal concentrations. J Dent Res 2002; 81: 265-269.
  • 38. Janke V, von Neuhoff N, Schlegelberger B, Leyhausen G, Geurtsen W. TEGDMA causes apoptosis in primary human gingival fibroblasts. J Dent Res 2003; 82: 814-818.
  • 39. Issa Y, Watts DC, Brunton PA, Waters CM, Duxbury AJ. Resin composite monomers alter MTT and LDH activity of human gingival fibroblasts in vitro. Dent Mater 2004; 20: 12-20.
  • 40. Chang HH, Chang MC, Lin LD, Lee JJ, Wang TM, Huang CH, Yang TT, Lin HJ, Jeng JH. The mechanisms of cytotoxicity of urethane dimethacrylate to Chinese hamster ovary cells. Biomaterials 2010; 31: 6917-6925.
  • 41. Demirci M, Hiller KA, Bosl C, Galler K, Schmalz G, Schweikl H. The induction of oxidative stress, cytotoxicity, and genotoxicity by dental adhesives. Dent Mater 2008; 24: 362-371.
  • 42. Samuelsen JT, Dahl JE, Karlsson S, Morisbak E, Becher R. Apoptosis induced by the monomers HEMA and TEGDMA involves formation of ROS and differential activation of the MAP-kinases. Dent Mater 2007; 23: 34-39.
  • 43. Lefeuvre M, Bourd K, Loriot MA, Goldberg M, Beaune P, Perianin A, Stanislawski L. TEGDMA modulates glutathione transferase P1 activity in gingival fibroblasts. J Dent Res 2004; 83: 914-919.
7tepe Klinik-Cover
  • ISSN: 2458-9586
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2005
  • Yayıncı: Yeditepe Üniversitesi Rektörlüğü