CAD/CAM yüksek dayanımlı cam seramikler

Hastaların her geçen gün daha estetik ve hızlı tedavi beklentileri arttıkça, dijital diş hekimliğindeki gelişmeler de hızlanmıştır. Yeni restoratif meteryaller ile tek seansta üretimi mümkün kılan bilgisayar destekli tasarım ve üretim (CAD/CAM) teknolojisi, bu beklentileri karşılar hale gelmiştir. Dental porselenlerin temelini oluşturan feldspatik porselen ve lösitle güçlendirilmiş cam seramiklerin düşük bükülme dayanımı gibi dezavantajlarını elimine etmek amacıyla, seramik yapıya güçlendirici maddeler eklenmiştir. Bu durum tabaklama gerektirmeyen monolitik materyalleri geliştirmiştir. Böylece kor materyali gereksinimi ortadan kalkmıştır ve dolayısı ile porselen-kor bağlantısındaki sorunlar elimine edilmiştir. Sonuçta yapısal bütünlüğü daha güçlü, CAD/CAM üretimine uygun hazır disk ve bloklar kullanıma sunulmuştur. Bu disk ve bloklar yapıya; lityum disilikat, zirkonyum oksit, aluminyum oksit, lösit ve rezin kompozit gibi maddeler eklenerek çeşitli üretim teknikleriyle üretilmektedirler. Bu materyallerin hangi klinik durumlarda tercih edileceği ise; materyalin mekanik, optik ve biyouyumluluk özelliğine göre belirlenmektedir. Bu derlemede ise son zamanlarda popüler hale gelen yüksek dayanımlı cam seramiklerin güncel literatür desteği ile materyal özellikleri incelenmiştir.

CAD/CAM high strength glass ceramics

Day by day, developments in digital dentistry are accelerated with the increase of patient’s improved faster and aesthetic treatment expectations. Computer aided design and manufacturing (CAD / CAM) technology makes it possible to manufacture restorations in a single appointment with new restorative materials that meets these expectations of the patients. In order to eliminate the disadvantages of feldspatic porcelain and leucite-reinforced glass ceramics, which is the basis of dental porcelain with low flexural strength, has been added to the ceramic structure for reinforcement of the materials. This has improved monolithic materials that do not require veneering. Thus, the core material has not been needed, and therefore problems with porcelain-core connection have been eliminated. Consequently, prefabricated discs and blocks with stronger structural integrity are available for CAD/CAM. These discs and blocks are made with various production techniques by adding materials such as lithium disilicate, zirconium oxide, aluminum oxide, leucite and resin composite. The clinical situation in which these materials are to be used is determined by the mechanical, optical and biocompatibility of the material. In this review, recent literature support and material properties of high strength glass ceramics, which became popular recently, were examined.

___

  • 1. Lebon N, Tapei L, Duret F, Attal JP. Understanding dental CAD/CAM for restorations- dental milling machines from a mechanical engineering viewpoint. Part A: chairside milling machines. Int J Comput Dent 2016; 19(1): 45- 62.
  • 2. El- Meliegy E, van Noort R. 1- History, Market and Classification of Bioceramics, Part I Introduction to Medical Ceramics. Glasses and Glass Ceramics for Medikal Applications. New York: Springer, 2012. p.3-14.
  • 3. Denry I, Kelly JR. Emerging ceramic based materials for dentistry. J Dent Res 2014; 93: 1235-1242.
  • 4. Belli R, et al. Chairside CAD/CAM materials. Part 1: Measurement of elastic contants and microstructural characterization. Dent Mater 2017; 33(1): 84-98.
  • 5. Wendler M, et al. Chairside CAD/CAM materials. Part 2: Flexural strength testing. Dent Mater 2017; 33(1): 99-109.
  • 6. Anusavice KJ. Chapter 18 Dental ceramics. Part 4: Indirect Restorative Materials. Phillip’s Science of Dental Materials. St. Louis: Elsevier, 2013. p.418-474.
  • 7. Elsaka SE, Elnaghy AM. Mechanical properties of zirconia reinforced lithium silicate glass-ceramic. Dent Mater 2016; 32(7): 908-914.
  • 8. Guess PC, Selz CF, Voulgarakis A, Stampf S, Stappert CF. Prospective clinical study of press-ceramic overlap and full veneer restorations: 7-year results. Int J Prosthodont 2014; 27(4): 355-358.
  • 9. Sartori N, et al. CAD/CAM High Strength Glass- Ceramics. Quintessence of Dental Tecnology. 2015; 38: 39-54.
  • 10. Höland W, Schweiger M, Frank M, Rheinberger V. A comparison of the microstructure and properties of the IPS Empress 2 and the IPS Empress glass-ceramics. J Biomed Mater Re. 2000; 53(4): 297-303.
  • 11. Schultheis S, Strub JR, Gerds TA, Guess PC. Monolithic and bi-layer CAD/CAM lithium-disilicate versus metal-ceramic fixed dental prostheses: comparison of fracture loads and failure modes after fatigue. Clin Oral Investig 2013; 17(5): 1407-1413.
  • 12. Esquivel-Upshaw JF, Anusavice KJ, Young H, Jones J, Gibbs C. Clinical performance of a lithia disilicate-based core ceramic for three-unit posterior FPDs. Int J Prosthodont 2004; 17(4): 469-475.
  • 13. Valenti M, Valenti A. Retrospective survival analysis of 261 lithium disilicate crowns in a private general practice. Quintessence Int 2009; 40(7): 573-579.
  • 14. Marquardt P, Strub JR. Survival rates of IPS empress 2 all-ceramic crowns and fixed partial dentures: results of a 5-year prospective clinical study. Quintessence Int 2006; 37(4): 253-259.
  • 15. Teichmann M, Göckler F, Weber V, Yıldırım M, Wolfart S, et al. Ten-year survival and complication rates of lithium-disilicate (Empress 2) tooth-supported crowns, implant-supported crowns, and fixed dental prostheses. J Dent 2017; 56: 65-77.
  • 16. Kern M, Sasse M, Wolfart S. Ten-year outcome of three-unit fixed dental prostheses made from monolithic lithium disilicate ceramic. J Am Dent Assoc 2012; 143(3): 234-240.
  • 17. Wolfart S, Bohlsen F, Wegner SM, Kern M. A preliminary prospective evaluation of all-ceramic crown-retained and inlay-retained fixed partial dentures. Int J Prosthodont 2005; 18(6): 497-505.
  • 18. Simeone P, Gracis S. Eleven-Year Retrospective Survival Study of 275 Veneered Lithium Disilicate Single Crowns. Int J Periodontics Restorative Dent 2015; (5): 685-694.
  • 19. Toman M, Toksavul S. Clinical evaluation of 121 lithium disilicate all-ceramic crowns up to 9 years. Quintessence Int 2015; 46(3): 189-197.
  • 20. Hench LL, Day DE, Holand W, Rheinberger VM. Glass and Medicine. Int J Appl Glass Sci 2010; 1: 104-117.
  • 21. Gracis S, Thompson VP, Ferencz JL, Silva NR, Bonfante EA. A new classification system for all-ceramic and ceramic-like restorative materials. Int J Prosthodont 2015; 28(3): 227-235.
  • 22. Höland W, Apel E, vant’t Hoen C. Studies of crystal phase formations in high strength lithium disilicate glass-ceramics. J Non-Cryst Solids 2006; 352: 4041- 4050.
  • 23. Stookey SD. Catalyzed crystallization of glass in theory and practice. Ind Eng Chem 1959; 51: 805-808.
  • 24. Höland W, Beall GH; Chapter 1 Principles of Designing Glass- Ceramic Formation 1.American Ceramic Society. Glass-Ceramic Technology, ed 2. Hoboken: Wiley, 2012. p.1-72.
  • 25. Monmaturapoj N, Lawita P, Thepsuwan W. Characterisation and properties of lithium disilicate glass ceramics in the SiO2-Li2O-K2O-Al2O3 system for dental applications. Adv Mater Science Eng 2013; 2013: 1-11.
  • 26. Goharian P, Nemati A, Shabanian M, Afshar A. Properties, crystallization mechanism and microstructure of lithium disilicate glass-ceramic. J Non-Cryst Solids 2010; 356: 208-214.
  • 27. Höland W, Beall GH; American Ceramic Society. Composition systems for glass-ceramics. Glass-Ceramic Technology, ed 2. Hoboken: Wiley, 2012. p.75-206.
  • 28. El- Meliegy E, van Noort R. 4- Formulation of Medical Glasses. Part II Manufacturing Medical Glasses.Glasses and Glass Ceramics for Medical Applications. New York: Springer, 2012. p.57-78. 29. IPS e.max Scientific Documentation. Ivoclar Vivadent, 2009.
  • 30. Tulyaganov DU, Agathopoulos S, Kansal I, Valerio P, Ribeiro MJ, et al. Synthesis and properties of lithium disilicate glass- ceramics in the system SiO2-Al2O3-K2O-Li2O. Ceram Int 2009; 35: 3013-3019.
  • 31. Beall GH. Glass-ceramics: Recent development and application. Ceram Trans 1993; 30: 241-266. 32. Beall GH. Design of and properites glass ceramics. Annu Rev Mater Sci 1992; 22: 91-119.
  • 33. Headly TJ, Loehman RE. Crystallization of a glass ceramic by epitaxial growth. J Am Ceram Soc 1984; 67: 620- 625.
  • 34. Apel E, Hoen C, Rheinberger V, Höland W. Influence of ZrO2 on the crystallization and properties of lithium disilikat glass ceramics derived from a multi component system. J Eur Ceram Soc 2007; 27: 1571-1577.
  • 35. Höland W, Schweiger M, Watzke R, Peschke A, Kappert H. Ceramics as biomaterials for dental restoration. Expert Rev Med Devices 2008; 5: 729-745.
  • 36. Guess PC et al. All Ceramic systems: Laboratory and clinical performance. Dent Clin of North Am 2011; 55: 333.
  • 37. Seydler B, Schmitter M. Clinical performance of two different CAD/CAM-fabricated ceramic crowns: 2-Year results. J Prosthet Dent 2015; 114(2): 212-216.
  • 38. Traini T, Sinjari B, Pascetta R, Serafini N, Perfetti G, et al. The zirconia-reinforced lithium silicate ceramic: lights and shadows of a new material. Dent Mater J; 35(5): 748- 755.
  • 39. Denry I, Kelly JR. Emerging ceramic-based materials for dentistry. J Dent Res 2014; 93: 1235-1242.
  • 40. The new DNA of high-strength glass ceramics, Celtra Duo. Dentsply 2013.
  • 41. Kruger S, Deubener J, Ritzberger C, Höland W. Nucleation kinetics of lithium metasilicate in ZrO2-bearing lithium disilicate glasses for dental application. Int J Adv Glass Sci 2013; 4: 9-19.
  • 42. VITA Suprinity: Technical and Scientific Documentation. VITA Zahnfabrik, 2013.
  • 43. Durschang B, Probst J, Thiel N, Bibus J, Vollman M, Schusser U (inventors). Fraunhofer- Gesellschaft, Degudent, Vita Zahnfabrik, assignees. Lithium disilicate glass-ceramic, method for production thereof and use thereof. US patent application 20120309607 A1, 6 December 2012.
  • 44. Al-Akhali M, Chaar MS, Elsayed A, Samran A, Kern M. Fracture resistance of ceramic and polymer-based occlusal veneer restorations. J Mech Behav Biomed Mater 2017; 74: 245-250.
  • 45. Hamza TA, Sherif RM. Fracture Resistance of Monolithic Glass-Ceramics Versus Bilayered Zirconia-Based Restorations. J Prosthodont 2017; 18.
  • 46. Sieper K, Wille S, Kern M. Fracture strength of lithium disilicate crowns compared to polymer- infiltrated ceramic-network and zirconia reinforced lithium silicate crowns. J Mech Behav Biomed Mater 2017; 74: 342-348.
  • 47. Awad D, Stawarczyk B, Liebermann A, Ilie N. Translucency of esthetic dental restorative CAD/CAM materials and composite resins with respect to thickness and surface roughness. J Prosthet Dent 2015; 113(6): 534-540.
  • 48. Rey Duro F, Souza Andrade J, Duarte Jr S. Fluorescence: Clinical evulation of new composite resins. Quintessence Dent Technol 2012; 35:145-156.
  • 49. Duarte JR S, Phark J-H, Blatz M, Sadan A. Ceramic systems: An ultrastructural study. Quintessence Dent Technol 2010; 33:42-60.
7tepe Klinik-Cover
  • ISSN: 2458-9586
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2005
  • Yayıncı: Yeditepe Üniversitesi Rektörlüğü
Sayıdaki Diğer Makaleler

Effect of various irrigation solutions on cytokine expression of human gingival fibroblast: in vitro study

ZELİHA UĞUR AYDIN, KEREM ENGİN AKPINAR, CEYLAN HEPOKUR, Merve ALPAY, DEMET ALTUNBAŞ

Tekrarlanan fırınlamaların zirkonyanın bükülme dayanımı üzerine etkisi

FEHMİ GÖNÜLDAŞ, CANER ÖZTÜRK

CAD/CAM yüksek dayanımlı cam seramikler

Diler DENİZ, Güliz AKTAŞ, Barış GÜNCÜ, RAGİBE ŞENAY CANAY

Geleneksel Türk içeceklerinde bekletilen laminate geçici restorasyon materyallerinin renk stabilitelerinin karşılaştırılması

Ceyda ATABAY, MAKBULE TUĞBA TUNÇDEMİR

Karıştırma ve yerleştirme teknikleri Mineral Trioksit Agregatının pH değerini etkiler mi?

Dilek TÜRKAYDIN, Paul DUMMER, Mohammad Hossein NEKOOFAR, Fatima Betül BAŞTÜRK, Mahir GÜNDAY

Farklı irrigasyon solüsyonlarının insan fibroblast hücreleri üzerinde sitokin ekspresyonuna etkisi: in vitro çalışma

Kerem Engin AKPINAR, Ceylan HEPOKUR, Demet ALTUNBAŞ, Zeliha UĞUR AYDIN, Merve ALPAY

Siyah çay tüketim sıklığının ağız ve diş sağlığına etkisi

Gül YILDIZ TELATAR

Total dişsiz bir hastanın otojen greftleme sonrası All-on-4 konsepti ile tedavisi

Meryem Gülce SUBAŞI, Sercan KÜÇÜKKURT

Alt çene ön bölge çapraşıklığa sahip olgularda iki farklı braket sisteminin kısa dönem etkilerinin değerlendirilmesi

Yasin Atakan BENKLİ, SÜLEYMAN KUTALMIŞ BÜYÜK, Serpil KOŞGİN

Lazer ile dental implant yüzeyi pürüzlendirme yönteminin marjinal kemik kaybına etkisinin değerlendirilmesi

EROL CANSIZ, BAŞAK KESKİN YALÇIN