Krom (VI)’nın Oreochromis niloticus, Cyprinus carpio, Clarias gariepinus ile Callinectes sapidus’un Dokularında Birikimi, Protein ve Glikojen Düzeylerine Etkileri

Araştırmada, krom (VI)’nın 0.5, 1.0 ve 2.0 ppm’lik ortam derişimlerinin 7, 15 ve 30 gün sürelerle etkisinde Oreochromis niloticus, Cyprinus carpio, Clarias gariepinus ve Callinectes sapidus’un dokularındaki metal birikimi ile protein ve glikojen düzeylerindeki değişimler incelenmiştir. Doku örneklerinin krom analizi Atomik Absorbsiyon Spektrofotometrik yöntemle, doku protein analizi Lowry, glikojen analizi ise Antron metodu ile yapılmıştır. Kromun belirlenen süre ve ortam derişimlerinin etkisinde incelenen türlerde mortalite gözlenmemiştir. Belirlenen türlerde ve incelenen kas, solungaç, karaciğer ve hepatopankreas dokularında krom birikimi, metalin ortam derişimi ve etkide kalma süresindeki artışa bağlı olarak artmıştır. Birikim balıklarda en yüksek karaciğer, C. sapidus’da ise 0.5 ppm dışında solungaçlarda olurken, balık türleri arasında en yüksek C. gariepinus’da olduğu belirlenmiştir. İncelenen türlerde total protein düzeyi C. carpio dışında, glikojen düzeyi ise tüm türlerde ortam derişimi ve etkide kalma süresindeki artışa bağlı olarak azalmıştır. Krom etkisinde dokularda meydana gelen birikim, detoksifikasyon mekanizmaları ile glikojen ve total protein düzeylerindeki değişimler de metalin metabolik ve fizyolojik olaylarda neden olduğu değişikliklerle açıklanabilir

Accumulation of Chromium (VI) in Tissues of Oreochromis niloticus, Cyprinus carpio, Clarias gariepinus, Callinectes sapidus and Its Effect on Protein and Glycogen Levels

Accumulation of chromium in tissues of Oreochromis niloticus, Cyprinus carpio, Clarias gariepinus and Callinectes sapidus and its effect on protein and glycogen levels were studied after exposing the animals to 0.5, 1.0 and 2.0 ppm chromium over 7, 15 and 30 days. Chromium analysis of the tissue samples were carried out using atomic absorption spectrophotometric methods and tissue protein and glycogen analysis were carried out using Lowry and Anthron methods respectively. No mortality was observed in any of the chromium concentrations after 30 days of exposure. Chromium accumulation increased with increasing metal concentrations and exposure periods in the muscle, gill, liver and the hepatopankreas tissues studied. Accumulation was highest in liver tissues of fish whereas in hepatopankreas in C. sapidus except in 0.5 ppm chromium and it was higher in C. gariepinus compared the other two fish species. Total protein levels decreased with increasing concentrations of the metal and with prolonged exposure periods except C. carpio, while glycogen levels decreased with increasing exposure concentrations and periods in all the species studied. Tissue accumulation of chromium can be explained by detoxification mechanisms and changes in protein and glycogen levels might be due to metabolic and physiological changes caused by the metal.

___

  • Abbas, H.H. and Ali, F.K. 2007. Study the Effect of Hexavalent Chromium on Some Biochemical, Cytotoxicological and Histopatological Aspects of the Oreochromis spp. Fish, Pakistan Journal of Biological Sciences, 10(22): 3973-3982.
  • Adhikari, S., Ghosh, L. and Ayyappan, S. 2006. Combined Effects of Water pH and Alkalinity on the Accumulation of Lead, Cadmium and Chromium to Labeo rohita (Hamilton). Int. J. Environ. Sci. Tech., 3(3): 289-296.
  • Arslan, M., Karaytuğ, S. and Cicik, B. 2006. Effects of Copper on Tissue Glycogen and Sera Glucose Levels of Clarias lazera (Valenciennes, 1840). J. Fish. Aquat. Sci., 23(1-1): 23-27.
  • Babich, H., Schiffenbauer, M. and Stotzky, G. 1982. Comparative toxicity of trivalent and Hexavalent Chromium to Fungi. Bull. Environ. Contam. Toxicol., 28: 452-459.
  • Begum, G., Venkateswara Rao, J. and Srikanth, K. 2006. Oxidative Stress and Changes in Locomotor Behavior and Gill Morphology of Gambusia affinis Exposed to Chromium. Toxicol. Environ. Chem., 88: 355-365.
  • Biney, C., Amazu, A.T., Calamari, D., Kaba, N.,Mbome, I.L., Naeve, H., Ochumba, P.B.O., Osibanio, R. V. and Saad, M.A.H. 1994. Rewiev of Heavy Metals in the African Aquatic Environment. Ecotoxicol. Environ. Safety, 31: 134-159.
  • Blasco J and Puppo, J. 1999. Effect of Heavy Metals (Cu, Cd and Pb) on Aspartate and Alanine Aminotransferase in Ruditapes philippinarum (Mollusca: Bivalvia). Comp. Biochem. Physiol. Pharmacol. Toxicol. Endocrinol., 122: 253–63.
  • Canlı, M and Kargın, F. 1995. A Comparative Study on Heavy Metal (Cd, Cr, Pb and Ni) Accumulation in Tissues of the Carp Cyprinus carpio and the Nile Fish Tilapia nilotica. Turkish Journal of Zoology, 19: 165-171.
  • Cicik, B. and Erdem, C. 1992. Effects of Copper on the Quantitative Protein Changes in Liver and Muscle Tissues of Tilapia nilotica. Biyokimya Dergisi, 17(1): 51-64.
  • Cicik, B. 1995. Cyprinus carpio’da Bakır, Çinko ve Bakır + Çinko Karışımında Solungaç, Karaciğer ve Kas Dokularındaki Metal Birikiminin Nicel Protein, Glikojen ve Kandaki Bazı Biyokimyasal Parametreler Üzerine Etkileri. Doktora Tezi, Çukurova Üniversitesi Fen Bilimleri Enst. Biyoloji ABD, Adana, 107 s.
  • Cicik, B. 2003. Bakır-Çinko Etkileşiminin Sazan (Cyprinus carpio)’nın Karaciğer, Solungaç ve Kas Dokularındaki Metal Birikimi Üzerine Etkileri. Ekoloji Çevre Dergisi, 48(12): 32-36.
  • Cicik, B. and Engin, K. 2005. The Effects of Cadmium on Levels of Glucose in Serum and Glycogen Reserves in the Liver and Muscle Tissues of Cyprinus carpio (L., 1758). Turkish J. Vet. Ani. Sci., 29(1): 113-117.
  • Corrêa, J.D., Silva, M.R., Silva, A.C.B., Lima, S.M.A., Malm, O. and Allodi, S. 2005. Tissue Distribution, Subcellular Localization and Endocrine Distribution Patterns Induced by Cr and Mn in the Crab Ucides cordatus. Aquatic Toxicology, 73: 139-154.
  • Çiftçi, N., Cicik, B., Erdem, C., Ay, Ö. and Günalp, C. 2010. Accumulation of Chromium in Liver, Gill and Muscle Tissues of Oreochromis niloticus. Journal of Animal and Veterinary Advences, 9(14): 1958-1960.
  • Farag, A.M., May, T., Marty, G.D., Easton, M., Harper, D.D., Little, E.E. and Cleveland, L. 2006. The Effect of Chronic Chromium Exposure on the Health of Chinook Salmon (Oncorhynchus tshawytscha). Aquatic Toxicology, 76: 246-257.
  • Garg, S., Gupta, R.K and Jain, K.L. 2009. Sublethal Efects of Heavy Metals on Biochemical Composition and Their Recovery in Indian Major Carps. Journal of Hazardous Materials, 163: 1369-1384.
  • Gbem, T.T., Balogun, J.K., Lawal, F.A. and Annune, P.A. 2001. Trace Metal Accumulation in Clarias gariepinus (Teugels) Exposed to Sublethal Levels of Tannery Effluent. The Science of the Total Environment, 271: 1-9.
  • Greig, R. and Wenzloff, D. 1977. Final Report on Heavy Metals in Small Pelagic Finfish, Euphausid Crustaceans and Apex Predators, Including Sharks, as well as on Heavy Metals and Hydrocarbons (C15+) in Sediments Collected at Stations in and Near Deepwater Dumpsite 106. in U.S. Dep. Com. NOAA, Rockville, 547-564.
  • Heath, A.G. 1985. Water Pollution and Fish Physiology. CRC Pres, Inc. Boca Raton, Florida, 245.
  • Irato P., Santovito, G. Cassini, A. Piccinni E. and Albergoni. V. 2003. Metal Accumulation and Binding Protein Induction in Mytilus galloprovincialis, Scapharca inaequivalvis and Tapes philippinarum from the Lagoon of Venice. Arch Environ Contam Toxicol., 44: 476-484.
  • Langard, S and Norseth, T. 1979. Chromium. in: Handbook on the Toxicology of Metals, (L. Friberg, G. F. Nordberg ve V. B. Vouk (Eds.), Elsevier/North Holland Biomedical Press, 383-397.
  • Langston, W.J., Chesman, B.S., Burt, G.R., Pope, N.D. and McEvoy, J. 2002. Metallothionein in Liver of Eels Anguilla anguilla from the Thames Estuary: An Indicator of Environmental Quality. Mar. Environ. Res., 53(3): 263-293.
  • Levesque, H.M.T.W., Moon, P.G.C., Campbell, G.C. and Hontela, A. 2002. Seasonal Variation in Carbohydrate and Lipid Metabolism of Yellow Perch (Perca fluviatilis) Chronically Exposed to Metals in the Field. Aquat. Toxicol., 60: 257-267.
  • Ma, W., Wang, L., He, Y. and Yan, Y. 2008. Tissue specific cadmium and metallothionein levels in freshwater crab Sinopotamon henanense during acute exposure to waterborne cadmium. Environ. Toxicol., 23: 393-400.
  • Marchese, M., Gagneten, A.M., Parma, M.J. and Pavé, P.J. 2008. Accumulation and Elimination of Chromium by Freshwater Species Exposed to Spiked Sediments. Arch. Environ. Contam. Toxicol., 55: 603-609.
  • Mishra, A.K. and Mohanty, B. 2009. Chronic Exposure to Sublethal Hexavalent Chromium Affects Organ Histopatology and Serum Cortisol Profile of a Teleost, Channa punctatus (Bloch). Science of the Environment, 407: 5031-5038.
  • Nath, K. and Kumar, N. 1988. Hexavalent Chromium: Toxicity and Its Impact on Certain Aspects of Carbohydrate Metabolism of the Freshwater Teleost, Colisa fasciatus. The Science of the Total Environment, 72: 175-181.
  • Olsson, P.E. and Haux, C. 1985. Rainbow Trout Metallothionein. Inorg. Chim. Acta., 107: 67-71.
  • Parlak, H., Katalay, S. and Büyükışık, B. 1999. Accumulation and Loss of Chromium by mussels (M. galloprovincialis). Bull. Environ. Contam. Toxicol., 62: 286-292.
  • Plummer, D. T. 1971. Practical Biochemistry. Mc Graw Hill Book Company Ltd., England, 369. Radhakrishnaiah, K., Venkataramana, P., Suresh, A. and Sivaramakrishna, B. 1992. Effects of Lethal and Sublethal Concentrations of Copper on Glycolysis in Liver and Muscle of the Freshwater Teleost Labeo rohita. J. Environ. Biol., 13: 63-68.
  • Ruelas-Inzunza, J., Soto, L. A. and Páez-Osuna, F. 2003. Heavy-metal Accumulation in the Hydrothermal Vent Clam Vesicomya gigas from Guaymas Basin, Gulf of California. DeepSea Research I, 50: 757-761.
  • Rholf, J. F. and Sokal, R. R. 1969. Statistical Tables. W. H. and Freeman Company, San Francisco, 253.
  • Sastry, K.V. and Sunita, K. 1984. Chronic Toxic Effects of Chromium in Channa punctatus. J. Environ. Biol., 5: 47-52.
  • Svecevicius, G. 2006. Acute Toxicity of Hexavalent Chromium to European Freshwater Fish. Bull. Environ. Contam. Toxicol., 77(5): 741-747.
  • Tennant, D. A. and Forster, W. D. 1969. Seasonal variations and distribution of 65-Zn, 54-Mn, and 51-Cr in Tissues of the Crab Cancer magister Dana. Health Phys, 18: 649-659.
  • Van Hoof, F. and Van San, M. 1981. Analysis of Copper, Zinc, Cadmium and Chromium in Fish Tissues. A Tool for Detecting Metal Caused Fish Kills. Chemosphere, 10: 1127-1135.
  • Venu Gopal, N.B.R.K., Chandravathy, V.M., Sultana, S. and Reddy, S.L.N. 1990. In vivo Recovery of Glycogen Metabolism in Hemolymph and Tissues of Freshwater Field Crab Brytelphusa guerini on Exposure to Hexavalent Chromium. Ecotoxicol. and Environ. Safety, 20: 20-29.
  • Vinodhini, R. and Narayanan, M. 2008.Bioaccumulation of Heavy Metals in Organs of Freshwater Fish Cyprinus carpio (Common Carp). Int. J. Environ. Sci. Tech., 5(2): 179-182.
  • Vutukuru, S.S. 2003. Chromium Induced Alterations in Some Biochemical Profiles of the Indian Major Carp, Labeo rohita (Hamilton). Bull. Environ. Contam. Toxicol., 70: 118-123.
  • Vutukuru, S.S. 2005. Acute Effects of Hexavalent Chromium on Survival, Oxygen Consumption, Hematological Parameters and Some Biochemical Profiles of the Indian Major Carp, Labeo rohita. Int. J. Environ. Res. Public Health, 2(3): 456-462.
  • Vutukuru, S.S., Prabbath, N.A., Raghavender, M. and Yerramilli, A. 2007. Effect of Arsenic and Chromium on the Serum Amino-Transferases Activity in Indian Major Carp, Labeo rohita. Int. J. Environ. Res. Public Health, 4(3): 224-227.
  • Walsh, A. R. and O’Halloran, 2007. The Accumulation of Chromium by Mussels Mytilus edulis, (L) as a Funtion of Valency, Solubility and Ligation. Mar. Environ. Res., 43: 41-53.
  • Wedemeyer, G. A. and Yasutake, W. T. 1977. Clinical Methods for the Assessment of the Effects of Environmental Stress on Fish Health. U. S. Tech. Pap. U. S. Fish Wildl. Serv., 89: 1-18.