Balya (Balıkesir) Pb-Zn Madeni Atık Sahasının Biyojeokimyası ve Asidik Maden Drenajı Oluşumuna Etkileri

Bu çalışmada, Türkiye’nin en büyük ve en eski maden atık sahası Balıkesir Balya Pb- Zn maden atık  sahasının biyojeokimyası ve asidik maden drenajı (AMD) oluşumuna etkileri jeokimyasal, moleküler ve mikrobiyolojik teknikler birlikte kullanılarak araştırılmıştır. Balya atık sahasında Pb-Zn madencilik aktivitelerinden geride kalan sülfürce zengin pasaların/atıkların atmosferle teması sonucunda düşük pH’lı (2.7) ve yüksek metal içerikli (1.88 mg/L Pb, 24 mg/L Zn, 2.5 mg/L As ve 17 mg/L Cu) asidik sularoluşarak ortamın kontamine olmasına neden olmaktadır. Maden atığı, sediman, asidik ve yüzey suyu örneklerinde gerçekleştirilen jeokimyasal ve mikrobiyolojik analizler çevre açısından zararlı metallerin  taşınmasında ve dağılımında sülfürce zengin atıkların ayrışmasından kaynaklanan asidik suların (pH 2.7)  birincil etken olduğunu göstermiştir. Balya atık sahasında gelişen ve asidik drenaj suyu içeren göletlerde gerçekleştirilen kultivasyon temelli mikrobiyoloji çalışması sonucunda asidik suların ortalama asidofilik sülfür oksitleyen (aSOB) ve asidofilik Fe oksitleyen bakteri (aFeOB) miktarları sırası ile 8.4x10 cell/ml ve 9.6 x107 cell/ml’dir. Aynı değerler, atıkların ulaştığı Maden deresi yüzey su örneklerinde 3.8 x10 cell/ml ve 5.7x10 cell/ml olarak asidik sulara oranla daha düşük saptanmıştır. Maden deresi ve asidik gölet sedimanları üzerinde gerçekleştirilen 16S rDNA dizi analizine göre Balya atık sahasında Fe ve S döngüsünde Acidithiobacillus spp. grubuna bağlı prokaryotların dominant olduğu ortaya konmuştur. Bunun yanısıra, daha az oranda S oksidasyonunda etkili Sulfobacillus spp. populasyonuda tespit edilmiştir. Ayrıca, asidik suların ve atıkların ulaştığı daha düşük asidik karakter gösteren Maden Deresi sediman örneklerinde indirgenmiş sülfür türlerini (örn. kükürt) oksitleyen Thiobacillus spp. ve Thiovirga spp. cinsine bağlı mikroorganizmalar tespit edilmiştir. Bu türlerin tespiti, sahada değişen jeokimyasal koşullara uyum sağlayan dinamik bir mikrobiyal topluluğu göstermektedir. Sahada Fe oksitleyen ve indirgeyen mikroorganizmaların tespiti ile asidik sedimanlarda jarosit, plumbojarosit ve götit gibi ikincil Fe minerallerinin varlığı atıklardan metallerin salınımında, taşınımında ve depolanmasında mikrobiyal Fe döngüsünün önemli olduğunu göstermektedir. Tüm bu sonuçlar, Balya Pb-Zn maden atık sahasında S ve Fe döngüsünde etkili mikroorganizmaların asidik suların oluşumunda ve bileşiminde ana rol oynadıklarını ortaya koymaktadır.

___

  • Agdemir, N., Kırıkoglu, S., Lehmann, B. ve Tietze. J., 1994. Petrology and alteration geochemistry of the epithermal
  • Akyol, Z., 1978. Balya Madeni ve Atıkları Sorunu, Yeryuvarı ve İnsan, Mayıs, 68-69
  • Akyol, Z., 1980. Balıkesir, Balya, Arı-Orta Sahası Pb-Zn-Cu Cevher Yatağı Maden Jeolojisi ve Rezerv Çalışmaları, MTA Rap. No 6973.
  • Akyol. Z., 1982. Balıkesir-Balya bölgesinin jeolojisi, mineralojisi ve maden potensiyeli). Earth Sci Rev 3(1–2),168-169.
  • Aygen, T., 1956.Balya bölgesinin jeolojisi .Bull Miner Res Expl Inst Turkey D/11.
  • Aykol, A., Orgun, Y., Budakoglu, M., Turhan, M., Gultekin, AH., Yavuz, F., Esenli, V., Kumral, M,. 2002. Heavy metal
  • Balcı, N., Bullen, T.D., Witte-Lien ,K., Shanks, W.C., Motelica, M. ve Mandernack, K. W.,2006. Iron isotope fractionation during microbially stimulated Fe(II) oxidation and Fe(III) precipitation. Geochimica et Cosmochimica Acta, 70(3), 622-639.
  • Balcı, N., W.C. Shanks, Mayer , B., ve Mandernack, K. W., 2007. Oxygen and Sulfur Isotope Systematics of Sulfate
  • Balcı, N. C., 2010.Effect of bacterial activity on trace metals release from oxidation of sphalerite at low pH (<3) and implications for AMD environment. Earth and Environmental Sciences. 60,485–493.
  • Balcı, N., Mayer, B, Shanks, W. C., ve Mandernack, K. W., 2012. Oxygen and sulfur isotope systematics of sulfate produced during abiotic and bacterial oxidation of sphalerite and elemental sulfur. Geochimica et Cosmochimica Acta 77, 335-351.
  • Bigham, J.M. ve Nordstrom, D.K., 2000. Iron and aluminum hydroxysulfates from acid sulfate waters. In: Alpers,
  • C.N.,Jambor, J.L., Nordstrom, D.K. (Eds.), Sulfate Minerals Crystallography, Geochemistry, and Environmental Significance. Rev. Mineral. Geochem. 40, 351–403.
  • Blowes, D.W., Jambor, J.L., Hanton-Fong, C.J., Lortie, L.ve Gould, W.D., 1998. Geochemical, mineralogical and
  • microbiological characterization of a sulphide-bearing carbonate-rich gold-mine tailings impoundment, Joutel,
  • Bond, P., Druschel, G.K., ve Banfield ,J.F., 2000. Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems. Appl. Environ. Microbiol., 66,4962-4971.
  • Brett J. Baker ve Banfield, J. F.,2003. Microbial communities in acid mine drainage. FEMS Microbiology Ecology, 44 ( 2) 139-152.
  • Brett J. Baker ve Banfield, Jillian F., 2003.Microbial communities in acid mine drainage. FEMS Microbiology Ecology, 44(2). pp. 139-152.
  • Edwards, K.J., Hu, B., Hamers, R.J. ve Banfield, J.F., 2001. A new look at microbial leaching patterns on sulfide minerals. FEMS Microbial Ecology, 34(3): 197-206
  • Dzombak, D.A.ve Morel, F.M.M., 1990. Surface Complexation Modeling: Hydrous Ferric Oxide. Wiley, New York.320
  • EPA (United States Environmental Protection Agency) http://water. epa.gov/scitech/swguidance/
  • Fowler, T.A., ve Crundwell, F.K.,1998. Leaching of zinc sulfide by Thiobacillus Ferrooxidans: Experiments with a
  • controlled redox potential indicate no direct bacterial mechanism. Appl. Environ. Microbiol, 64, 3570-3575.
  • Garrels R. M. ve Thomson M. E., 1960. Oxidation of pyrite by iron sulfate solutions. Geochim. Cosmochim. Acta 68, 4559-4569.
  • Gaudette H., Flight W., Toner L. ve Folger D., 1974. An inexpensive titration method for the determination of organic carbon in recent sediments. J. Sediment. Petrol. 44, 249-253
  • Gleisner, M., Herbert, R. B., ve Kockum P. C. F., 2006. Pyrite oxidation by Acidithiobacillus ferrooxidans at various
  • Gould, W.D., McCready, R.G.L., Rajan, S., Krouse, H.R., 1989. Stable isotope composition drainage in the western
  • United States. In: Alpers, C.N., Blowes, D.W. (Eds.), Environmental Geochemistry of Sulfide Oxidation.
  • Gül, S., 2014. Balıkesir Balya Pb-Zn madeni atık sahasının biyojeokimyası ve asidik maden drenajı oluşumuna
  • Hulshof, A.H.M., Blowes, D.W. ve Gould, W.D., 2006. Evaluation of in situ layers for treatment of acid mine drainage: a field comparison. Water Res. 40, 1816–1826.
  • Johnson, D.B. ve Hallberg, K.B.,2003. The microbiology of acidic mine waters. Res Microbiol. 154(7), 466-473.
  • Kovenko V (1940) Balya lead mines (Turkey). Bull Miner Res Expl Inst Turkey 4/21:587–594
  • Moses, C.O. ve Nordstrom K., 1987. Aqueous pyrite oxidation by dissolved oxygen and by ferric iron. Geochimica et
  • Nordstrom, D.K., Alpers, C.N., Ptacek, C.J. ve Blowes, D., 2000. Negative pH and extremely acidic mine waters from Iron Mountain, California. Environ. Sci. Technol, 34,254–258.
  • Nordstrom, D.K., ve Alpers, C.N., 1999. Geochemistry of Acid Mine Waters in, The Environmental Geochemistry of Mineral Deposits. G.S. Plumlee and M.J. Logsdon, eds. Rev. Econ. Geol. 6A,133-160.
  • Nordstrom, D.K.ve Southam, G., 1997. Geomicrobiology of sulfide mineral oxidation. In: Banfield, J.F., Nealson, K.H.(Eds.), Geomicrobiology: Interactions between microbes and minerals. Rev. Mineral. 35, 361–390.
  • Öngür, T., 2003. Balya Çinko-Kurşun Madeni,Çevre Sorunları ve Toplumsal Yeniden Kalkınma. TMMOB .
  • Plumlee, G.S., 1999. The environmental geology of mineraldeposits. In: Plumlee, G.S., Logsdon, M.J. (Eds), TheEnvironmental Geochemistry of Mineral Deposits, Part A, Processes, Techniques, and Health Issues. Rev. Econ. Geol.6A, 71–116.
  • Randall, S.R., Sherman, D.M., Ragnarsdottir, K.V., 2001. Sorption of As(V) on green rust (Fe4(II) Fe(II)(OH)12SO4·3H2O) and lepidocrocite (γ-FeOOH): surface complexes from EXAFS spectroscopy. Geochim. Cosmochim. Acta 65 (7), 1015–1023.
  • Rimstidt, J.ve Vaughan, D., 2003. Pyrite oxidation: a state-of-theart assessment of the reaction mechanism. Geochim. Cosmochim. Acta 67, 873–880.
  • Rimstidt,J.D; Chermak, J.A., ve Gagen, M.P. 1994.Rate of reaction of Galena,Sphalerite, Chalcopyrite and Arsenopyrite with Fe (III) in Acidic solutions, Environmental geochemistry of sulfide oxidation: Washington , D.C., American chemical society, symposium series 550, 2-14.
  • Sand W., Gehrke T., Jozsa P. G. ve Schippers A. 2001. (Bio)chemistry of bacterial leaching-direct vs. indirect bioleaching. Hydrometallurgy 59, 159–175.
  • Sasaki, K., Tsunekawa, M., Ohtsuka, T.ve Konno, H., 1995. Confirmation of a sulfur-rich layer on pyrite after
  • Schemel, L.E., Kimball, B.A.ve Bencala, K.E., 2000. Colloidal formation and metal transport through two mixing zones
  • Schippers, A., Jozsa, P.G. ve Sand, W., 1996. Sulfur chemistry in bacterial leaching of pyrite. Appl. Environ. Microbiol,
  • 62, 3424-3431.
  • Schippers, A., Jozsa, P.-G., Sand, W., Kovacs, Z.M. ve Jelea, M., 2000. Microbiological pyrite oxidation in a mine
  • Schippers, A., 2004. Biogeochemistry of metal sulfide oxidation in mining environments, sediments and soils. In:
  • Amend, J.P., Edwards, K.J., Lyons, T.W. (Eds.), Sulfur Biogeochemistry — Past and Present. : Special Paper, 379. Geological Society of America, Boulder, Colorado, USA, 49–62.
  • Schippers, A. ve Bosecker, K., 2005. Bioleaching: analysis of microbial communities dissolving metal sulfides. In: Barredo, J.-L. (Ed.), Methods in Biotechnology. Microbial Processes and Products, Vol. 18. Humana Press Inc, Totowa, New York, 412.
  • Silverman, M. P. ve Lundgren, D. G., 1959. Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans. I. An improved medium and a harvesting procedure for securing high cell yields. J. Bacteriol. 77,
  • Singer P. C. ve Stumm W., 1970. Acid mine drainage: The ratelimiting step. Science 167, 1121–1123.
  • Stumm ve Morgan, 1981. Aquatic chemistry: An introduction emphasizing chemical equilibria in natural waters. John
  • Wiley and Sons, New York, 780s.
  • Suzuki, I. ve Chan, C. W., 1994.Oxidation of inorganic sulfur compounds by Thiobacilli. Environmental geochemistry
  • of sulfide oxidation: Washington, D.C., American Chemical Society, Symposium series 550, 61-67.
  • Suzuki, I., Chan, C. W.,1994. Oxidation of inorganic sulfur compounds by Thiobacilli. Environmental geochemistry of sulfide oxidation: Washington , D.C., American chemical society, symposium series 550, 61-67.
  • Sweerts, J. R. A., Beer, D. D., Nielsen, L. P., Verdouw, H., Heuvel, J. C. V. d., Cohen, Y. ve Cappenberg, T. E.,1990.
  • Denitrification by sulphur oxidizing Beggiatoa spp. mats on freshwater sediments. Nature 344, 762-763.
  • Taylor, B., ve Wheeler, M.C.,1984b. Stable isotope geochemistry of acid mine drainage: experimental oxidation of pyrite. Geochimica and Cosmochimica Acta,48 : 2669-2678.
  • Taylor, B.E.ve Wheeler, M.C., 1994. Sulfur- and oxygen-isotope geochemistry of acid mine treatment of acid mine