Kuvaterner Yaşlı Güneydoğu Karadeniz Fayı’nın Arazi Verileri ve Bunun Tektonik Önemi, Doğu Pontidler, Türkiye

Doğu Pontidler, Arabistan-Avrasya levhalarının yakınlaşmasından dolayı sıkışmalı fay geçişi (transpressional) içerisinde, 0,5 mm’den fazla bir hızla “push-up” geometrisiyle yükselen aktif bir dağ kuşağıdır. Söz konusu yükselim, Karadeniz’e cephe dağ önlerinde ilk kez bu çalışmada haritalanan ara aşmalı (en échelon) geometrili eğim/verev atımlı normal fay segmentleri tarafından karşılanmaktadır. Yaklaşık 65 km uzunluğunda ve 1 km genişliğinde 9 farklı parçadan oluşan Güneydoğu Karadeniz Fay zonu boyunca yapılan kinematik çalışmalarda eğim açıları 60o-90o ve kayma açıları (rake) 32o-90o arasında değişen ve sahil kesimindeki dağ önlerini denetleyen çok sayıda fay düzlemi ölçülmüştür.  Bu çalışmada varılan sonuçlar, (i) Doğu Pontidler’in kıyı şeridinde gözlenen bu faylanma, başlangıçta σ1’in yatay konumlu olduğu sıkışmalı bir ortamda oluşan bindirme fayı ve ters bileşenli doğrultu atımlı faylar nedeniyle kabuk kalınlığını artırdığını ve bunun sonucunda yatayda olan σ1 düşey konuma geçerek eski zayıflık zonlarının normal faylar şeklinde yeniden çalıştığını, (ii) Güneydoğu Karadeniz Fayı olarak tanımlanan bu zayıflık zonunun Kuvaterner’de yüzey faylanmasıyla sonuçlanmış depremler ürettiğini ve bu nedenle Türkiye Diri Fay Haritası’nda “Kuvaterner Fayı” sınıfında değerlendirilmesi gerektiğini göstermektedir.

Field Evidence for Southeast Black Sea Fault of Quaternary Age and Its Tectonic Implications, Eastern Pontides, Turkey

The Eastern Pontides, which is the under transpressional deformation zone, is an active mountain belt in northern Turkey that has been uplifting at a rate of more than 0.5 mm/year, along with push-up geometry. This uplift is accommodated by the dip/oblique slip normal fault segments of an en-echelon geometry mountain front mapped here for the first time. According to our geological mapping studies, the Southeast Black Sea Fault zone is about 65 km total long and more than 1 km wide and comprises nine fault segments. In the kinematic analysis conducted along the fault zone, fault planes have dip angles between 60o-90o to the north. The measured fault planes have rake angles range from 32o to 90o. Our findings indicate that (i) the faulting observed in the mountain front of the Eastern Pontides, the crustal thickness has increased due to thrust component strike-slip faults formed in a compressive regime where σ1 was horizontal at the initially, as a result of this, σ1 which is the horizontal position went into a vertical position, and lastly the former weakness zones were re-activated as normal faults, (ii) this weakness is defined as an Southeast Black Sea Fault that produces earthquakes have resulted in surface rupture in the Quaternary and therefore this fault should be considered in the class of “Quaternary Fault” in Turkey’s active fault maps.The Eastern Pontides, which is the under transpressional deformation zone, is an active mountain belt in northern Turkey that has been uplifting at a rate of more than 0.5 mm/year, along with push-up geometry. This uplift is accommodated by the dip/oblique slip normal fault segments of an en-echelon geometry mountain front mapped here for the first time. According to our geological mapping studies, the Southeast Black Sea Fault zone is about 65 km total long and more than 1 km wide and comprises nine fault segments. In the kinematic analysis conducted along the fault zone, fault planes have dip angles between 60o-90o to the north. The measured fault planes have rake angles range from 32o to 90o. Our findings indicate that (i) the faulting observed in the mountain front of the Eastern Pontides, the crustal thickness has increased due to thrust component strike-slip faults formed in a compressive regime where σ1 was horizontal at the initially, as a result of this, σ1 which is the horizontal position went into a vertical position, and lastly the former weakness zones were re-activated as normal faults, (ii) this weakness is defined as an Southeast Black Sea Fault that produces earthquakes have resulted in surface rupture in the Quaternary and therefore this fault should be considered in the class of “Quaternary Fault” in Turkey’s active fault maps.

___

  • Adamia, S. A., Lordkipanidze, M. B., & Zakariadze, G. S., 1977. Evolution of an active continental margin as exemplified by the Alpine history of the Caucasus. Tectonophysics, 40, 183-189.
  • Akçar, N., Tikhomirov, D., Özkaymak, Ç., Ivy‐Ochs, S., Alfimov, V., Sözbilir, H., Uzel, B., Schlüchter, C., 2012. 36Cl exposure dating of paleoearthquakes in the Eastern Mediterranean: First results from the western Anatolian Extensional Province, Manisa fault zone, Turkey. Geological Society of America Bulletin, 124(11‐12), 1724-1735.
  • Akkar, S., Azak, T., Çan, T., Çeken, U., Demircioğlu Tümsa, M.B., Duman, T. Y., Erdik, M., Ergintav, S., Kadirioğlu, F. T., Kalafat, D., Kale, Ö., Kartal, R. F., Kekovalı, K., Kılıç, T., Özalp, S., Altuncu Poyraz, S., Şeşetyan, K., Tekin, S., Yakut, A., Yılmaz, M. T., Yücemen, M. S, Zülfikar, Ö., 2018. Evolution of seismic hazard maps in Turkey. Bull Earthquake Eng, https://doi.org/10.1007/s10518018-0349-1.
  • Ardel, A., 1943. Trabzon ve Civarının Morfolojisi Üzerine Gözlemler. Türk Coğrafya Dergisi, 1, 7182.
  • Avagyan, A., Sosson, M., Karakhanian, A., Philip, H., Rebai, S., Rolland, Y., Melkonyan, R., Davtyan, V., 2010. Recent tectonic stress evolution in the Lesser Caucasus and adjacent regions, M. Sosson, N. Kaymakci, R.A. Stephenson, F. Bergerat, V. Starostenko (Ed.). Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform (393-408), Geological Society, London.
  • Aytaç, A., 2012. An Approach to the Sea Level Changes to Base on The Marine Terraces of the Turkish Black Sea Coasts. (Abstracts) Quaternary International, 30, 279-280.
  • Beaumont, C., Fullsack, P., Hamilton, J., 1994. Styles of crustal deformation in compressional orogens caused by subduction on the underlying lithosphere. Tectonophysics, 232, 119-132.
  • Beaumont, C., Ellis, S., Hamilton, J., & Fullsack, P.,1996. Mechanical model for subduction collision tectonics of Alpine-type compressional orogens. Geology, 24, 675-678.
  • Bektaş, O., Yılmaz, C., Taslı, K., Akdağ, K., Özgür, S., 1995. Cretaceous rifting of the eastern Pontide carbonate platform (NE Turkey): the formation of carbonates breccias and turbidites as evidences of a drowned platform. Geologia, 57 (1-2), 233-244.
  • Bektaş, O., Şen, C., Atıcı, Y., Köprübası, N., 1999. Migration of the Upper Cretaceous Subduction Related Volcanism Towards the Back-arc Basin of the Eastern Pontide Magmatic Arc (NE Turkey). Geological Journal, 34, 95-106.
  • Bektaş, O., Çapkınoğlu, S., Akdağ, K., 2001. Successive extensional tectonic regimes during the Mesozoic as evidenced by neptunian dikes in the Pontide Magmatic Arc, Northeast Turkey. International Geology Review, 43(9), 840-849.
  • Berndt, C., Yıldırım, C., Çiner, A., Strecker, M. R., Ertunç, G., Sarıkaya, M.A., Ozcan, O., Ozturk, T., Güneç Kıyak, N., 2018. Quaternary uplift of the northern margin of the Central Anatolian Plateau: New OSL dates of fluvial and delta-terrace deposits of the Kızılırmak River, Black Sea coast, Turkey. Quaternary Science Reviews, 201, 446-469.
  • Bonini, M., Sokoutis, D., Talbot, C.J., Boccaletti, M., & Milnes, A.G., 1999. Indenter growth in analogue models of Alpine-type deformation. Tectonics, 18, 119-128.
  • Bonini, M., Sokoutis, D., Mulugeta, G., Katrivanos, E., 2000. Modelling hanging wall accommodation above rigid thrust ramps. Journal of Structural Geology, 22, 1165-1179.
  • Bull, W. B., 2007. Tectonic geomorphology of mountains: A new approach to paleoseismology (1th ed.). Wiley-Blackwell, Oxford.
  • Chen, Y., Li, S.H., Li, B., 2012. Slip rate of the Aksay segment of Altyn Tagh Fault revealed by OSL dating of river terraces. Quaternary Geochronology, 10, 291-299.
  • Chorowics, J., Dhont, D., Adıyaman, Ö., 1998. Black Sea-Pontid relationship:interpretation in terms of subduction. Abstract of Third International Turkish Geology Symposium, Ankara, 258.
  • Çifçi, G., Dondurur, D., Ergun, M., 2002. Sonar and high resolution seismic studies in the Eastern Black Sea. Turkish Journal of Earth Sciences, 11(1), 61-81.
  • Demir, G., Aytekin, M., Akgün, A., İkizler, S. B., Tatar, O., 2013. A comparison of landslide susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by likelihood-frequency ratio and analytic hierarchy process methods. Nat. Hazards 65(3), 1481-1506.
  • Demircioğlu, M. B., Şeşetyan, K, Duman, T. Y., Çan, T., Tekin, S., & Ergintav, S., 2017. A probabilistic seismic hazard assessment for the Turkish territory: Part II-fault source and background seismicity model, Bulletin Earthquake Engineering. https://doi.org/10.1007/s10518-017-0130-x.
  • Dempsey, D., Ellis, S., Archer, R., Rowland, J., 2012. Energetics of normal earthquakes on dip-slip faults. Geology, 40, 279-282.
  • Dewey, J. F., Pitman, W. C., Ryan, W. B. F., & Bonnin, J., 1973. Plate tectonics and evolution of the Alpine system. Geological Society of America Bulletin, 84, 3137-3180.
  • Doglioni, C., Barba, S., Carminati, E., Riguzzi, F., 2011. Role of the brittle-ductile transition on fault activation. Phys. Earth Planet. Int. 184, 160-171.
  • Doglioni, C., Barba, S., Carminati, E., Riguzzi, F., 2014. Fault on-off versus coseismic fluids reaction. Geoscience Frontiers 5, 767-780.
  • Emre, Ö., Ateş, Ş., Duman, T.Y., Keçer, M., Erkal, T., Doğan, A., Durmaz, S., Osmançelebioğlu, R., Karakaya, F., ve Özalp, S., Koçyiğit, A., Göncüoğlu, M.C., Toprak, V., Bozkurt, E., Dirik, K., Rojay, B., Yılmaz, İ.Ö., Teksöz, B., Cihan, M., ve Özacar, A., 1999. 17 Ağustos 1999 Gölcük Arifiye (Kuzeydoğu Marmara) depremleri sonrası Sakarya ili ve ona bağlı yerleşkeler için yeni yerseçimi alanları araştırma raporu. ODTÜ-MTA Genel Müdürlüğü-TÜBİTAK Ortak Araştırma Proje Raporu, MTA Rapor No 10273, Ankara.
  • Emre, O., Tüysüz, O., Yıldırım, C., 2009. Uplift of Pontide orogenic belt since the late Miocene. Abstract book of Second International Symposium on the Geology of the Black Sea Region (66-67), Ankara.
  • Emre, Ö., Duman, T.Y., Özalp, S., Elmacı, H., Olgun, S., Şaroğlu, F., 2013. Active fault map of Turkey with an explanatory text 1:1,250,000 scale. General Directorate of Mineral Research and Exploration, Special Publication Series, 30.
  • Erol, O., 1952. Trabzon Sekileri Hakkında Bir Not. Dil ve Tarih Coğrafya Fakültesi Dergisi, 10, 125-136.
  • Eyüboğlu, Y., Bektaş, O., Seren, A., Maden, N., Jacoby, W. R., Özer, R., 2006. Three directional extensional deformation and formation of the Liassic rift basins in the eastern Pontides (NE Turkey). Geologica Carpathica, 57(5), 337-346.
  • Eyüboğlu, Y., Bektaş, O., Pul, D., 2007. Mid-Cretaceous olistostromal ophiolitic melange developed in the back-arc basin of the eastern Pontide magmatic arc (NE Turkey). International Geology Review, 49(12), 1103-1126.
  • Eyüboğlu, Y., Santosh, M., Bektaş, O., Ayhan, S., 2011. Arc magmatism as a window to plate kinematics and subduction polarity: Example from the eastern Pontides belt, NE Turkey. Geoscience Frontiers, 2(1), 49-56.
  • Eyüboğlu, Y., Dudas, F.O., Santosh, M., Zhu, D.C., Yi, K., Chatterjee, N., Akaryalı, E., Liu Z., 2016. Cenozoic forearc gabbros from the northern zone of the Eastern Pontides Orogenic Belt, NE Turkey: implications for slab window magmatism and convergent margin tectonics. Gondwana Research, 33, 160-190.
  • Fattahi, M., Walker, R., Hollingsworth, J., Bahroudi, A., Nazari, H., Talebian, M., Armitage, S., Stokes, S., 2006. Holocene slip-rate on the Sabzevar thrust fault, NE Iran, determined using optically stimulated luminescence (OSL). Earth and Planetary Science Letters, 245, 673-684.
  • Frankel, K.L., Wegmann, K.W., Bayasgalan, A., Carson, R.J., Bader, N.E., Adiya, T., Bolor, E., Durfey, C.C., Otgonkhuu, J., Sprajcar, J., Sweeney, K.E., Walker, R.T., Marstellar, T.L., Gregory, L., 2010. Late Pleistocene slip rate of the Höh Serh–Tsagaan Salaa fault system, Mongolian Altai and intracontinental deformation in central Asia. Geophysical Journal International, 183 (3), 1134-1150.
  • Giaconia, F., Booth-Rea, G., Martínez-Martínez, J.M., Azañón, J.M., Pérez-Peña, J.V., 2012. Geomorphic analysis of the Sierra Cabrera, an active pop-up in the constructional domain of conjugate strike slip faults: The Palomares and Polopos fault zones (eastern Betics, SE Spain). Tectonophysics, 580, 27-42.
  • Gök, R., Mellors, R. J., Sandvol, E., Pasyanos, M., Hauk, T., Takedatsu, R., Yetirmishli, G., Teoman, U., Turkelli, N., Godoladze, T., Javakishvirli, Z., 2016. Lithospheric velocity structure of the Anatolian plateau-Caucasus-Caspian region, Journal of Geophysical Research: Solid Earth, 116(B5), 2156-2202.
  • Gündüz, S., 2015. Investigation of Active Tectonism Structure of The Eastern Black Sea with Using Multichannel Seismic Data. MSc Thesis, Dokuz Eylül University, Izmir.
  • Güven, İ. H., 1993. Geological and Metallogenic Map of the Eastern Black Sea Region; 1:250,000 Map. General Directorate of Mineral Research and Exploration, Trabzon.
  • Hamilton, W. J., 1842. Researches in asia minor, pontus and armenia with some account of their antiquities and geology (1th ed.). London: J. Murray. Hässig, M., Duretz, T., Rolland Y., Sosson M., 2016. Obduction of old oceanic lithosphere (80 Ma) due to thermal rejuvenation and the role of postobduction extension, insights from NE Anatolia Lesser Caucasus ophiolite and numerical modelling. Journal of Geodynamics, 96, 35-49.
  • ISC, 2018. Uluslararası Sismoloji Merkezi, Son depremler, 2018, http://www.isc.ac.uk/
  • Karajiyan, H., 1920. Mineral Resources of Armenia and Anatolia (1th ed.). Newyork: Armenia Press.
  • Keskin, S., 2007. Güneydoğu (GD) Karadeniz Sahil Kesiminin (Trabzon Yöresi) Denizel Taraçaları ve Aktif Tektoniği. Yüksek Lisans Tezi. Karadeniz Teknik Üniversitesi, Trabzon.
  • Keskin, S., Pedoja, K., Bektaş, O., 2011. Coastal uplift along the eastern Black Sea coast: new marine terrace data from Eastern Pontides, Trabzon (Turkey) and a Review. Journal of Coastal Research, 27, 63-73.
  • Ketin, İ., 1969. Über die nordanatolische Horizontalverschiebung. Bull. Miner. Res. Explor. Inst. Turk. 72:1-28.
  • Koçyiğit, A., Yılmaz, A., Adamia, S., Kuloshvili, S., 2001. Neotectonics of East Anatolian Plateau (Turkey) and Lesser Caucasus: implication for transition from thrusting to strike-slip faulting. Geodinamica Acta 14: 177-95.
  • Kurushin, R. A., Bayasgalan, A., Ölziybat, M., Enkhtuvshin, B., Molnar, P., Bayarsayhan, C., Hudnut, K. W., Lin, J., 1997. The surface rupture of the 1957 Gobi-Altay, Mongolia, earthquake, Geological Society of America, 320, Special Paper.
  • Maden, N., Özturk, S., 2015. Seismic b-values, bouguer gravity and heat flow data beneath Eastern Anatolia, Turkey: Tectonic implications. Surv Geophys. 36, 549-570.
  • Maillot, B., Koyi, H.A., 2006. Thrust dips and thrust refraction in fault-bend faults: analogue experiments and theoretical predictions. Journal Structural Geology, 28, 36-49.
  • Merle, O., Abidi, N., 1995. Approche experimentale du functionnement des rampes emergentes. Bulletin de la Société géologique de France, 166, 439-450.
  • Mozafari, A. N., Sümer, Ö., Tikhomirov, D., Özkaymak, Ç., Uzel, B., Ivy-Ochs, S., Vockenhuber, C., Sözbilir, H., Akçar, N., 2016. Holocene Time-slip history of normal fault scarps in western Turkey: 36Cl surface exposure dating. AGU Fall Meeting, 12-16 December, San Francisco, USA.
  • Mulugeta, G., Sokoutis, D., 2003. Hanging wall accommodation style in ramp-flat thrust models. In: D.A. Nieuwland (Ed.). New Insights into Structural Interpretation and Modelling (197207), Geological Society of London Special Publication.
  • Nadeau, R., Foxall, W., McEvilly, T. 1995. Clustering and periodic recurrence of microearthquakes on the San Andreas fault at Parkfield, California. Science, 267, 503-507.
  • Nefeslioğlu, H. A., Duman, T.Y., Durmaz, S., 2008. Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey). Geomorphology, 94 (3-4), 401-418.
  • Nikishin, A. M., Okay, A., Tüysüz, O., Demirer, A., Wannier, M., Amelin, N., Petrov, E. (2015). The Black Sea basins structure and history: New model based on new deep penetration regional seismic data. Part 2: Tectonic history and paleogeography. Marine and Petroleum Geology, 59, 656-670.
  • Oswald, F. (1906). Geology of Armenia. PhD Thesis, University of London, London.
  • Özkaymak, C., Sözbilir, H., Uzel, B., H. Akyüz, S., 2011. Geological and Palaeoseismological Evidence for Late Pleistocene−Holocene Activity on the Manisa Fault Zone, Western Anatolia. Turkish Journal of Earth Sciences, 20, 449-474.
  • Özsayar, T., Pelin, S., Gedikoğlu, A., 1981. Doğu Pontidler`de Kretase. K.Ü. Yerbilimleri Dergisi, 1, 65-114.
  • Persson, K., 2001. Effective indenters and the development of double-vergent orogens; insights from analogue sand models. In: H.A. Koyi, N.S. Mancktelow, (Eds.). Tectonic Modelling; a Volume in Honor of Hans Ramberg (191-206), Geological Society of America Memoir.
  • Persson, K.S., Sokoutis, D., 2002. Analogue models of orogenic wedges controlled by erosion. Tectonophysics, 356, 323-336.
  • Philip, H., Cisternas, A., Gvishiani, A., Gorshkov, A., 1989. The Caucasus: an actual example of the initial stages of continental collision. J. Tectonoph., 161, 1-21.
  • Rau, R.‐J., Chen, K. H., Ching, K.‐E., 2007. Repeating earthquakes and seismic potential along the northern Longitudinal Valley fault of Eastern Taiwan. Geophysical Research Letter, 34, L24301.
  • Ring, U., Reischmann, T., 2002. The weak and superfast Cretan detachment, Greece: exhumation at subduction rates in extruding wedges. Journal of the Geological Society, 159, 225-228.
  • Robinson, A. G., Banks, C. J., Rutherford, M. M., Hirst, J. P. P., 1995. Stratigraphic and structural development of the Eastern Pontides, Turkey. Journal of the Geological Society, 152, 861-872.
  • Rosas, F.M., Duarte, J.C., Almeida, P., Schellart, W.P., Riel, N., Terrinha, P., 2017. Analogue modelling of thrust systems: Passive vs. active hanging wall strain accommodation and sharp vs. smooth fault ramp geometries. Journal of Structural Geology, 99, 45-69.
  • Scholz, C. H., 1990. The Mechanics of Earthquakes and Faulting. Cambridge, New York, Cambridge University Press, Ref. QE534.2.S37.3
  • Semerci, A., 1990. Trabzon İli Yerleşim Alanının Mühendislik Jeolojisi Açısından İncelenmesi. Yüksek Lisans Tezi. Karadeniz Teknik Üniversitesi, Trabzon.
  • Softa, M., Spencer, J.Q.G., Emre, T., Sözbilir, H., Turan, M., 2016. “Timing of Quaternary Marine Terrace Formation and Uplift Rates in the Eastern Pontides, NE Turkey”, Abstracts of American Geopyhsical Union, San Fransisco. (2016AGUFMEP11A0989S)
  • Softa, M., Spencer, J. Q. G., Emre, T., Sözbilir, H., Turan, M., 2017. Late Quaternary rapid uplift deduced from marine terraces in Eastern Pontides, Turkey. Geological Society of America Abstracts with Programs, 49(6). doi: 10.1130/abs/2017AM-305129.
  • Softa, M., Emre, T., Sözbilir, H., Spencer, J. Q. G., Turan, M., 2018. Geomorphic evidence for active tectonic deformation in the coastal part of Eastern Black Sea, Eastern Pontides, Turkey, Geodinamica Acta, 30:1, 249-264.
  • Softa, M., 2018. Tektonik Jeomorfoloji ve Denizel Taraçaların Yaş Verileri Işığında Doğu Karadeniz Havzası Güney Kenarının Aktif Tektoniği. Doktora Tezi, Dokuz Eylül Üniversitesi, İzmir. Solmaz, F., 1990. Vakfıkebir-Yomra Arası Kıyı Şeridinin Morfolojisi ve Taraçalar. Yüksek Lisans Tezi, İstanbul Üniversitesi, İstanbul.
  • Sosson, M., Stephenson, R., Sheremet, Y., Rolland, Y., Adamia, S., Melkonian, R., Kangarli, T., Yegorova, T., Avagyan, A., Galoyan, G., Danelian, T., Hässig, M., Meijers, M., Müller, C., Sahakyan, L., Sadradze, N., Alania, V., Enukidze, O., Mosar, J., 2016. The Eastern Black Sea-Caucasus region during the Cretaceous: new evidence to constrain its tectonic evolution. Comptes Rendus Geoscience, 348, 23-32.
  • Şengör, A. M. C., Yılmaz, Y., 1981. Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics, 75, 181-241.
  • TPAO, 2010. Türkiye Petrolleri Anonim Ortaklığı, Sismik kesitler. 2010, http://www.tpao.gov.tr
  • Tsereteli, N., Tibaldi, A., Alania, V., Gventsadse, A., Enukidze, O., Varazanashvili, O., Müller, B. I.R., 2016. Active tectonics of central-western Caucasus, Georgia. Tectonophysics, 691, 328344.
  • Ustaömer, T., Robertson, A. H. F., 1996. Paleotethyan tectonic evolution of the north Tethyan margin in the central Pontides, N Turkey. In: A. Erler, T. Ercan, E. Bingol, S. Orcen, (Ed.). Proceedings of the International Symposium on the Geology of the Black Sea Region (24-33). Ankara.
  • Westaway, R., 1994. Present‐day kinematics of the Middle East and eastern Mediterranean. Journal of Geophysical Research, 99, 12071-12090.
  • Yıldırım, C., Schildgen, T.F., Echtler, H., Melnick, D., Strecker M.R., 2011. Late Neogene and active orogenic uplift in the Central Pontides associated with the North Anatolian Fault: implications for the northern margin of the Central Anatolian Plateau, Turkey. Tectonics, 30 (5), TC5005, doi:10.1029/2010TC002756.
  • Yıldırım, C., Melnick, D., Ballato, P., Schildgen, T. F., Echtler, H., Erginal, A. E., Kıyak, N. G., Strecker, M. R., 2013. Diferential uplift along the northern margin of the Central Anatolian Plateau: inferences from marine terraces. Quaternary Science Reviews, 81, 12-28.
  • Yılmaz, B.S., Güç, A.R., Gülibrahimoğlu, İ., Yazıcı, E.N., Konak, O., Yaprak, S., Köse, Z., 1998. Trabzon İlinin Çevre Jeolojisi ve Doğal Kaynakları. Maden Tetkik ve Arama Genel Müdürlüğü. Rapor No: 9997.
  • Yılmaz, C., Şen, C., Şener, S., Kandemir, R., Karslı, O., Bak, T. K., 2005. Trabzon Kıyı Bölgesinin Pliyo-Kuvaterner Stratigrafisi. Türkiye Kuvaterner Sempozyumu, 5, 111-117.
  • Yılmaz, Y., 2017. Morphotectonic Development of Anatolia and the Surrounding Regions, In: I. Çemen, Y. Yılmaz, (Ed.). Active Global Seismology: Neotectonics and Earthquake Potential of the Eastern Mediterranean Region (11-91). American Geophysical Union.