Fen Bilgisi Öğretmen Adaylarının Sosyobilimsel Bir Konuda Karar Verme Stratejilerinin Alan Bilgileriyle İlişkisi

Bu çalışmanın amacı fen bilgisi öğretmen adaylarının sosyobilimsel bir konuda karar verme stratejilerinin, o konu ile ilgili alan bilgileriyle olan ilişkisini incelemektir. Bu amaç için araştırmada nitel araştırma yöntemlerinden bütüncül çoklu durum deseni kullanılmıştır. Bu çalışma, Türkiye’nin İç Anadolu bölgesinde yer alan bir devlet üniversitesinin Fen Bilgisi Öğretmenliği Anabilim Dalı’nda öğrenim gören 125 öğretmen adayı arasından amaçlı örneklem yöntemiyle seçilmiş olan 15 öğretmen adayı ile yürütülmüştür. Araştırmada veri toplama aracı olarak GDO’lu Besinlere Yönelik Bilgi Testi (GBYBT), Çikolata Seçimi senaryosu ve görüşme soruları kullanılmıştır. İlk olarak GBYBT 125 öğretmen adayına uygulanmıştır. Bu uygulama sonucunda öğretmen adayları GDO’lu besinlere yönelik alan bilgisi düşük-orta-yüksek seviyeli olmak üzere üç gruba ayrılmıştır. Bu gruplardan amaçlı örneklem yöntemiyle GDO’lu besinlere yönelik alan bilgisi düşük seviyeli (f=5), orta seviyeli (f=5) ve yüksek seviyeli (f=5) öğretmen adayı görüşme için seçilmiştir. Seçilen 15 öğretmen adayına karar verme stratejilerini değerlendirmek amacıyla senaryo verilmiş ve ardından görüşmeler yapılmıştır. Araştırma bulgularına göre GDO’lu besinlerle ilgili alan bilgisi yüksek seviyeli grubun seçeneklerle ilgili farklı bakış açılarını üst düzeyde dikkate aldığı, kriterleri karşılaştırarak önemine göre tarttığı görülmektedir (telafi edilebilir strateji). Alan bilgisi orta seviyeli grubun kriterler arasında karşılaştırma yapmasının yanı sıra kesintiler kullandıkları görülmektedir (karma strateji). Alan bilgisi düşük seviyeli grubun ise seçenekler arasında sık sık kesintiler yaptığı ve seçenekleri dar bir bakış açısında değerlendirdikleri görülmektedir (telafi edilemez strateji). Bu sonuçlara göre alan bilgisi yüksek seviyeli öğretmen adaylarının karar verme yetkinlikleri diğer gruplara göre daha yüksektir. Öğretmen adaylarının eğitimi sürecinde sosyobilimsel konularda etkili karar verme stratejilerine sahip olabilmeleri için bu konudaki alan bilgilerini artırıcı eğitim ortamlarının oluşturulması önerilmektedir.   

The Relationship of Preservice Science Teachers’ Decision Making Strategies and Content Knowledge in Socio-Scientific Issues

The aim of this study is to examine the relationship between preservice science teachers' decision-making strategies and their content knowledge in a socioscientific issue. For this purpose, holistic multiple case design was used in qualitative research methods in this research. The study was carried out with 15 preservice teachers selected by means of purposive sampling method among 125 preservice teachers studying at Science Education Department of a state university at Central Anatolian Region of Turkey. As a data collection tool in the research, GMOs Knowledge Test (GKT), Chocolate Selection Scenario and interview questions were used. First, GKT was applied to 125 preservice teachers. As a result of this test, preservice teachers are divided into three groups as low, medium and high level content knowledge about GMOs. From these groups, low level (f = 5), medium level (f = 5) and high level (f = 5) preservice teachers were selected by purposeful sampling method for the interview. A scenario was given in order to evaluate the decision-making strategies of the 15 selected preservice teachers and then interviews were conducted. According to research findings, the group with high-level content knowledge about GMOs seems to discuss according to their importance by comparing the criterias that consider different aspects of the options at a high level (compensatory decision-making strategy). It is seen that the group with medium level content knowledge uses cut offs as well as making comparisons between the criteria (mixed strategy). It is also seen that the group with low level content knowledge frequently uses cut offs between options and evaluates options in a narrow viewpoint (non-compensatory decision-making strategy). According to these results, decision making abilities of preservice teachers with high-level content knowledge are higher than other groups. The training environment which increases the content knowledge in this issue is suggested so that the preservice teachers can have effective decision making strategies in socio-scientific issues during the education process

___

  • Acar, Ö., Türkmen, L. and Roychoudhury, A., 2010. Student difficulties in socioscientific argumentation and decision-making research findings: Crossing the borders of two research lines. International Journal of Science Education, 32(9), 1191–1206.
  • Aikenhead, G. S., 1985. Collective decision making in the social context of science. Science Education, 69(4), 453-475.
  • Bingle, W. H. and Gaskell, P. J., 1994. Scientific literacy for decisionmaking and the social construction of scientific knowledge. Science Education, 78(2), 185-201.
  • Bybee, R. W., 1987. Science education and the science‐technology‐society (S‐T‐S) theme. Science Education, 71(5), 667-683. Carroll, J. S. and Johnson, E. J., 1990. Decision research: A field guide. Sage Publications, Inc.
  • Cassidy, E. W. and Kurfman, D. G., 1977. Decision making as purpose and process. In D. G. Kufman (Ed.), Developing decision-making skills, Arlington, VA: National Council for the Social Studies, pp, 1-26.
  • Chang, S. N. and Chiu, M. H., 2008. Lakatos’ scientific research programmes as a framework for analysing informal argumentation about socio‐scientific issues. International Journal of Science Education, 30(13), 1753-1773.
  • Demiral, Ü., 2014. Fen bilgisi öğretmen adaylarının sosyobilimsel bir konudaki argümantasyon becerilerinin eleştirel düşünme ve bilgi düzeyleri açısından incelenmesi: GDO örneği. Karadeniz Teknik Üniversitesi, Eğitim Bilimleri Enstitüsü, Doktora Tezi.
  • Demiral, Ü. ve Çepni, S., 2018. Fen bilgisi öğretmen adaylarının sosyobilimsel bir konudaki argümantasyon becerilerinin incelenmesi. Kırşehir Eğitim Fakültesi Dergisi, 19(1), 734-760.
  • Eggert, S. and Bögeholz, S., 2010. Students' use of decision‐making strategies with regard to socioscientific issues: An application of the Rasch partial credit model. Science Education, 94(2), 230-258.
  • Eggert, S., Ostermeyer, F., Hasselhorn, M. and Bögeholz, S., 2013. Socioscientific decision making in the science classroom: The effect of embedded metacognitive instructions on students’ learning outcomes. Education Research International. Doi:0.1155/2012/309894.
  • Fang, S. C., Hsu, Y. S. and Lin, S. S., 2018. Conceptualizing socioscientific decision making from a review of research in science education. International Journal of Science and Mathematics Education, 1-22.
  • Gresch, H., Hasselhorn, M. and Bögeholz, S., 2013. Training in decision-making strategies: An approach to enhance students’ competence to deal with socio-scientific issues. International Journal of Science Education, 35(15), 2587-2607.
  • Hong, J. L. and Chang, N. K., 2004. Analysis of Korean high school students' decision-making processes in solving a problem involving biological knowledge. Research in Science Education, 34(1), 97-111.
  • Jho, H., Yoon, H. G. and Kim, M., 2014. The relationship of science knowledge, attitude and decision making on socio-scientific issues: The case study of students’ debates on a nuclear power plant in Korea. Science & Education, 23(5), 1131-1151.
  • Kalaycı, Ş., 2010. SPSS uygulamalı çok değişkenli istatistik teknikleri (Vol. 5). Ankara, Turkey: Asil Yayın Dağıtım.
  • Kilinc, A., Kelly, T., Eroglu, B., Demiral, U., Kartal, T., Sonmez, A. and Demirbag, M., 2017. Stickers to facts, imposers, democracy advocators, and committed impartialists: Preservice science teachers’ beliefs about teacher’s roles in socioscientific discourses. International Journal of Science and Mathematics Education, 15(2), 195-213.
  • Kilinc, A., Demiral, U. and Kartal, T., 2017. Resistance to dialogic discourse in SSI teaching: The effects of an argumentation‐based workshop, teaching practicum, and induction on a preservice science teacher. Journal of Research in Science Teaching, 54(6), 764-789.
  • Kolsto, S. D., 2006. Patterns in students’ argumentation confronted with a risk‐focused socio‐scientific issue. International Journal of Science Education, 28(14), 1689-1716.
  • Milli Eğitim Bakanlığı [MEB], 2013. İlköğretim kurumları (ilkokullar ve ortaokullar) fen bilimleri dersi (3, 4, 5, 6, 7 ve 8. sınıflar) öğretim programı. Ankara: Milli Eğitim Bakanlığı Talim ve Terbiye Kurulu Başkanlığı.
  • Miles, M. B. and Huberman, A. M., 1994. Qualitative data analysis: An expanded sourcebook. Sage. Millar, R. and Osborne, J. (Eds.)., 1998. Beyond 2000: Science education for the future: A report with ten recommendations. King's College London, School of Education.
  • National Research Council., 1996. National science education standards. National Academies Press. Plevyak, L. H., 2007. What do preservice teachers learn in an inquiry-based science methods course? Journal of Elementary Science Education, 19(1), 1-13.
  • Prachagool, V., Nuangchalerm, P. , Subramaniam, G. and Dostál, J., 2016. Pedagogical decision making through the lens of teacher preparation program. Journal for the Education of Gifted Young Scientists, 4(1), 41-52.
  • Ratcliffe, M. and Grace, M., 2003. Science education for citizenship: Teaching socio-scientific issues. McGraw-Hill Education (UK).
  • Rundgren, S. C. and Rundgren, C. J., 2010. SEE-SEP: From a separate to a holistic view of socioscientific issuest. Asia-Pacific Forum on Science Learning and Teaching, 11(1).
  • Saaty, T. L., 2008. Decision making with the analytic hierarchy process. International journal of services sciences, 1(1), 83-98.
  • Schwarz, N., 2000. Emotion, cognition, and decision making. Cognition & Emotion, 14(4), 433-440.
  • Sadler, T. D. and Zeidler, D. L., 2005. Patterns of informal reasoning in the context of socioscientific decision making. Journal of research in science teaching, 42(1), 112-138.
  • Sadler, T. D. and Zeidler, D. L., 2009. Scientific literacy, PISA, and socioscientific discourse: Assessment for progressive aims of science education. Journal of Research in Science Teaching, 46(8), 909-921.
  • Seethaler, S.and Linn, M., 2004. Genetically modified food in perspective: an inquiry‐based curriculum to help middle school students make sense of tradeoffs. International Journal of Science Education, 26(14), 1765-1785.
  • Sohn, K. Y., Yang, J. W. and Kang, C. S., 2001. Assimilation of public opinions in nuclear decision-making using risk perception. Annals of Nuclear Energy, 28(6), 553-563.
  • Sönmez, A. and Kılınç, A., 2012. Preservice science teachers’ self-efficacy beliefs about teaching GM Foods: The potential effects of some psychometric factors. Necatibey Faculty of Education Electronic Journal of Science and Mathematics Education, 6(2), 49-76.
  • Yin, R. K., 2003. Case study research: design and methods (3rd ed.). Thousand Oaks, CA: Sage.
  • Zeidler, D. L., Sadler, T. D., Simmons, M. L. and Howes, E. V., 2005. Beyond STS: A research‐based framework for socioscientific issues education. Science Education, 89(3), 357-377.
  • Zeidler, D. L. and Nichols, B. H., 2009. Socioscientific issues: Theory and practice. Journal of Elementary Science Education, 21(2), 49-58.
Uludağ Üniversitesi Eğitim Fakültesi Dergisi-Cover
  • Başlangıç: 1986
  • Yayıncı: Bursa Uludağ Üniversitesi Eğitim Fakültesi